Abstract
Given an n-point metric (P,d) and an integer k > 0, we consider the problem of covering P by k balls so as to minimize the sum of the radii of the balls. We present a randomized algorithm that runs in n O(logn ·logΔ) time and returns with high probability the optimal solution. Here, Δ is the ratio between the maximum and minimum interpoint distances in the metric space. We also show that the problem is NP-hard, even in metrics induced by weighted planar graphs and in metrics of constant doubling dimension.
Work by the first, second, third, and fifth authors was partially supported by NSF CAREER award CCR 0237431.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C., Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets by disks. In: Amenta, N., Cheong, O. (eds.) Symposium on Computational Geometry, pp. 449–458. ACM, New York (2006)
Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: FOCS, pp. 184–193 (1996)
Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)
Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. J. Comput. Syst. Sci. 68(2), 417–441 (2004)
de la Vega, W.F., Kenyon, C.: A randomized approximation scheme for metric max-cut. J. Comput. Syst. Sci. 63(4), 531–541 (2001)
Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation algorithms for clustering to minimize the sum of diameters. Nord. J. Comput. 7(3), 185–203 (2000)
Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: STOC, pp. 448–455. ACM, New York (2003)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)
Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On clustering to minimize the sum of radii. In: SODA, pp. 819–825. SIAM, Philadelphia (2008)
Hochbaum, D.S., Shmoys, D.B.: A best possible approximation algorithm for the k-center problem. Math. Oper. Res. 10, 180–184 (1985)
Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. part II: The p-medians. SIAM J. Appl. Math. 37, 539–560 (1982)
Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity search. In: SODA, pp. 798–807. SIAM, Philadelphia (2004)
Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)
Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing 11(2), 329–343 (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K. (2008). On Metric Clustering to Minimize the Sum of Radii. In: Gudmundsson, J. (eds) Algorithm Theory – SWAT 2008. SWAT 2008. Lecture Notes in Computer Science, vol 5124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69903-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-69903-3_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69900-2
Online ISBN: 978-3-540-69903-3
eBook Packages: Computer ScienceComputer Science (R0)