Abstract
Non-deterministic matrices, a natural generalization of many-valued matrices, are semantic structures in which the value assigned to a complex formula may be chosen non-deterministically from a given set of options. We show that by combining Nmatrices and preferential metric-based considerations, one obtains a family of logics that are useful for reasoning with uncertainty. We investigate the basic properties of these logics and demonstrate their usefulness in handling incomplete and inconsistent information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answering in inconsistent databases. Theory and Practice of Logic Programming 3(4–5), 393–424 (2003)
Arieli, O.: Commonsense reasoning by distance semantics. In: Proc. TARK 2007, pp. 33–41 (2007)
Arieli, O.: Distance-based paraconsistent logics. International Journal of Approximate Reasoning (in press, 2008), doi:10.1016/j.ijar.2007.07.002
Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: from basic entailments to plausible relations. Logic Journal of the IGPL 8(2), 119–148 (2000)
Arieli, O., Denecker, M., Bruynooghe, M.: Distance semantics for database repair. Annals of Mathematics and Artificial Intelligence 50(3–4), 389–415 (2007)
Arieli, O., Zamansky, A.: Non-deterministic distance-based semantics. In: Proc. AGI 2008. Frontiers in Artificial Intelligence, vol. 171, pp. 39–50. IOS Press, Amsterdam (2008)
Arieli, O., Zamansky, A.: Some simplified forms of reasoning with distance-based entailments. In: Bergler, S. (ed.) Canadian AI 2008. LNCS (LNAI), vol. 5032, pp. 36–47. Springer, Heidelberg (2008)
Avron, A., Lev, I.: Non-deterministic multi-valued structures. Journal of Logic and Computation 15, 241–261 (2005)
Ben Naim, J.: Lack of finite characterizations for the distance-based revision. In: Proc. KR 2006, pp. 239–248 (2006)
Chomicki, J., Marchinkowski, J.: Minimal-change integrity maintenance using tuple deletion. Information and Computation 197(1–2), 90–121 (2005)
Dalal, M.: Investigations into a theory of knowledge base revision. In: Proc. AAAI 1988, pp. 475–479. AAAI Press, Menlo Park (1988)
Gabbay, D.: Theoretical foundation for non-monotonic reasoning, Part II: Structured non-monotonic theories. In: Proc. SCAI 1991. IOS Press, Amsterdam (1991)
Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation, vol. 9. Research Studies Press (2001)
Grove, A.: Two modellings for theory change. J. Phil. Logic 17, 157–180 (1988)
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1–2), 167–207 (1990)
Lafage, C., Lang, J.: Propositional distances and preference representation. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 48–59. Springer, Heidelberg (2001)
Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55, 1–60 (1992)
Lehmann, D., Magidor, M., Schlechta, K.: Distance semantics for belief revision. Journal of Symbolic Logic 66(1), 295–317 (2001)
Lopatenko, A., Bertossi, L.: Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 179–193. Springer, Heidelberg (2006)
Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 35–110 (1994)
Pigozzi, G.: Two aggregation paradoxes in social decision making: the ostrogorski paradox and the discursive dilemma. Episteme 2(2), 33–42 (2005)
Shoham, Y.: Reasoning about change. MIT Press, Cambridge (1988)
Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Belief Change and Statistics, vol. II, pp. 105–134. Kluwer, Dordrecht (1988)
Tarski, A.: Introduction to Logic. Oxford University Press, Oxford (1941)
Urquhart, A.: Many-valued logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 249–295. Kluwer, Dordrecht (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arieli, O., Zamansky, A. (2008). Reasoning with Uncertainty by Nmatrix–Metric Semantics. In: Hodges, W., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2008. Lecture Notes in Computer Science(), vol 5110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69937-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-69937-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69936-1
Online ISBN: 978-3-540-69937-8
eBook Packages: Computer ScienceComputer Science (R0)