Skip to main content

3D Modeling for Deformable Objects

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5098))

Included in the following conference series:

  • 1160 Accesses

Abstract

This paper presents an efficient BSpline surface reconstruction technique for modelling deformable objects. The differences of our methods from previous BSpline fitting approaches are: 1) the reconstructed BSpline patch does not need to be square shaped. This significantly reduces the required number of BSpline patches for reconstruction; 2) the dataset to be reconstructed does not have to be grid data. This is important, especially for 3D scan data, which is unstructured dense point cloud, normally with holes. A compact 3D shape description can be obtained using our approach. This shape representation allows 3D metamorphosis, direct manipulation of free-form deformation, and level of detail control (real time multi-resolution rendering). The demonstrated results are reconstructed directly from the dense point clouds collected from our 3D scanner (based on stereo photogrammetry technique) and example datasets provided by Cyberware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexa, M.: Merging Polyhedral Shapes with Scattered Features. The Visual Computer 16(1), 26–37 (2000)

    Article  MATH  Google Scholar 

  2. Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multi-resolution Decimation Based on Global Error. The Visual Computer 13, 228–246 (1997)

    Article  Google Scholar 

  3. Certain, A., Popović, J., DeRose, T., Duchamp, T., Salesin, D., Stuetzle, W.: Interactive Multi-resolution Surface Viewing. In: Computer Graphics (SIGGRAPH 1996 proceedings), pp. 91–98 (1996)

    Google Scholar 

  4. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multi-resolution Analysis of Arbitrary Meshes. In: Proceedings of 22nd International Conference on Computer Graphics and Interactive Techniques, August, pp. 173–182 (1995)

    Google Scholar 

  5. Eck, M., Hoppe, H.: Automatic Reconstruction of B-Spine Surfaces of Arbitrary Topological Type. In: Proceedings of 23rd International Conference on Computer Graphics and Interactive Techniques, pp. 325–334 (1996)

    Google Scholar 

  6. Forsey, D., Bartels, R.: Surface Fitting with Hierarchical splines. ACM Transactions on Graphics 14(2), 134–161 (1995)

    Article  Google Scholar 

  7. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh Optimization. In: Proceedings of SIGGRAPH 1993, August, pp. 19–26 (1993)

    Google Scholar 

  8. Hoppe, H.: Progressive Meshes. In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 99–108 (1996)

    Google Scholar 

  9. Hutton, T.: Dense Surface Models of the Human Face, PhD thesis (2004)

    Google Scholar 

  10. Krishnamurthy, V., Levoy, M.: Fitting Smooth Surfaces to Dense Polygon Meshes. ACM-0-89791-746-4/96/008 (1996)

    Google Scholar 

  11. Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of Arbitrary Triangular Meshes. IEEE Computer Graphics and Applications, 62–75 (2000)

    Google Scholar 

  12. Lee, A., Dobkin, D., Sweldens, W., Schroder, P.: Multi-resolution Mesh Morphing. In: Proceedings of SIGGRAPH 1999, pp. 343–350 (1999)

    Google Scholar 

  13. Lounsbery, M., Derose, T., Warren, J.: Multi-resolution Analysis for Surfaces of Arbitrary Topological Type. Transactions on Graphics 16(1), 34–73 (1997)

    Article  Google Scholar 

  14. Lee, T., Huang, P.: Fast and Intuitive Metamorphosis of 3D Polyhedral Models Using SMCC Mesh Merging Scheme. IEEE Transactions on Visualization and Computer Graphics 9(1) (2003)

    Google Scholar 

  15. Lin, C., Lee, T.: Metamorphosis of 3D Polyhedral Models Using Progressive Connectivity Transformations. IEEE Transactions on Visualization and Computer Graphics 10(6) (2004)

    Google Scholar 

  16. Lounsbery, M.: Multi-resolution Analysis for Surfaces of Arbitrary Topological Type, PhD thesis, Department of Computer Science, University of Washington (1994)

    Google Scholar 

  17. Milroy, M., Bradley, C., Vickers, G., Weir, D.: G1 Continuity of B-spline Surface Patches in Reverse Engineering. CAD 27, 471–478 (1995)

    MATH  Google Scholar 

  18. Song, Y., Bai, L.: Single B-Spline Patch 3D Modelling for Facial Analysis. In: Proceedings of 6th International Conference on Recent Advances in Soft Computing (RASC 2006), Canterbury, United Kingdom (July 2006)

    Google Scholar 

  19. Song, Y., Bai, L., Wang, Y.: 3D Object Modelling for Entertainment Applications. In: International Conference on Advances in Computer Entertainment Technology, Hollywood, USA (June 2006)

    Google Scholar 

  20. Song, Y.: 3D Free-form Surface Representation and Its Applications. PhD thesis (2007)

    Google Scholar 

  21. Welch, W., Witkin, A.: Variational Surface Modelling. In: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, pp. 157–166 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco J. Perales Robert B. Fisher

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Y., Bai, L. (2008). 3D Modeling for Deformable Objects. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2008. Lecture Notes in Computer Science, vol 5098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70517-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70517-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70516-1

  • Online ISBN: 978-3-540-70517-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics