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Abstract. This paper describes a method to analyze human motion, based on 

the reduction of multidimensional captured motion data. A Dynamic Program-

ming Piecewise Linear Approximation model is used to automatically extract in 

an optimal way key-postures distributed along the motion data. This non uni-

form sub-sampling can be exploited for motion compression, segmentation, or 

re-synthesis.  It has been applied on arm end-point motion for 3D or 6D trajec-

tories. The analysis method is then evaluated, using an approximation of the 

curvature and the tangential velocity, which turns out to be robust to noise and 

can be calculated on multidimensional data.  

1   Introduction 

The representation and the thorough understanding of human motion is a crucial and 

challenging problem which has been raised in many scientific areas, including anima-

tion of virtual characters, analysis of motor performances in sport motion and for 

disabled people. In recent years, the huge development of new technologies for mo-

tion capture has made the analysis of human motion feasible, and yielded data-based 

methods for gesture analysis, retrieval, and computer-generated animation. 

One major problem in representing gesture from recorded data is that these data are 

multidimensional and direct use of them is rather expensive and fastidious. Another 

problem is the lack of flexibility. Computing motion from real motion chunks necessi-

tates indeed the elaboration of large data sets, and the development of data-driven 

methods for tracking, adapting or generating new motion. Finally, finding the best 

motion representation is a central problem, depending on the application. As these 

processes operate on multidimensional data, one way to characterize gesture is to 

compress the original information into relevant samples and to use this data reduction 

to efficiently retrieve or reconstruct the motion, or to identify meaningful motion 

units. The automatic extraction of key frames (postures or key points) is also an effi-

cient way to synthesize new gestures, which takes into account the spatial variability 

of gestures and the co-articulation effects. 



 

In this paper we consider motion captured data consisting of sampled trajectories 

that characterize the evolution with time of the position and orientation of the human 

joints. For human gestures, these joint trajectories present specific profiles that can be 

readable through the analysis of shape (curvature) and kinematics (velocity). In par-

ticular variations in velocity are responsible for the aggregation of samples in some 

areas of the trajectories. We propose here to study both these spatial and cinematic 

characteristics in a reduced representation space. We use an adaptive sub-sampling 

algorithm, called DPPLA (Dynamic Programming Piecewise Linear Approximation), 

which identifies in an optimal manner a set of targets located on the trajectories. This 

target-based representation of trajectories is applied to automatic segmentation of 3D 

arm end-point trajectories and to motion reconstruction using inverse kinematics. An 

evaluation process is defined, using an approximation of the curvature and velocity 

along the motion sequences. We show that these approximations are strongly corre-

lated to curvature and tangential velocity, not only in the 3D space, but in multi di-

mensional space. These measures provide a way to automatically analyse gestures. 

Furthermore, the method can then be extended to multidimensional motion trajecto-

ries. 

 

The paper is mainly composed of six sections. Section 2 gives an overview of the 

related works. After describing in section 3 the adaptive non uniform sampling algo-

rithm (DPPLA) used for data reduction, section 4 proposes an analysis method using 

an approximation of curvature and velocity. Section 5 presents some results related to 

segmentation of 3D arm end-point trajectories and the way the obtained segments may 

be used for synthesis. The paper concludes and gives some perspectives in section 6. 

2   Related works  

 

Numerous techniques have been developed for the analysis of human motion captured 

data. These studies differ considerably, whether the emphasis is placed on data reduc-

tion for retrieval, segmentation, recognition, or synthesis purposes.  

There are many different mathematical approaches for curves and surfaces ap-

proximations, which tend to reduce the dimensionality of the motion data. Few works 

concern motion trajectories. Polygonal approximation provides characteristics points 

to represent the shape of the trajectory. These points, which correspond to local curva-

ture extrema, can be connected by line segments. This method has been used by [1] 

for non-uniform sub-sampling of motion time-series. Another method proposes curve 

approximation using active contours [2]. These methods are developed for dance 

gesture recognition. 

Other methods have been proposed to the problem of approximating multidimen-

sional curves using piecewise linear simplification and dynamic programming in 

O(kn
2
) complexity [3]. Some efficient algorithms [3-4] (in O(nlog(n)) complexity) 

have been proposed.  

 



 

The objective in this paper is not so much to find out the best data reduction 

method, but to define an adaptive method with a pre-defined compression rate that can 

be applied to multidimensional data. Moreover, we propose an analysis tool, ex-

pressed in the reduced space by measures that approximate the curvature and the ve-

locity of motion trajectories.  

3   Non uniform sampling algorithm (DPPLA) 

The motion consists of raw data composed of 3D Cartesian trajectories, each trajec-

tory representing the evolution with time of one coordinate x, y, or z expressing the 

position of a specific joint. For our study, we consider X(t) as constituted of time-

series in 3.p dimensions, represented by spatial vectors X(t) =[x1(t), y1(t), z1(t) x2(t), 

y2(t), z2(t)… xp(t), yp(t), zp(t)]. In practice, we deal with sampled trajectories at a con-

stant frequency of 120 Hz: X(n) where n is the time-stamp index. 

 

The approach consists in seeking an approximation
θ̂

X  of X(n), θ being the set of 

discrete time location {ni} of the segments endpoints. The selection of the optimal set 

of parameters { }in̂ˆ =θ  is performed using the adaptive dynamic programming pre-

sented below. 

 

Let us define θ(k) as the parameters of a piece wise approximation containing k 

segments, and δ(k,i) as the minimal error between the best piecewise linear approxi-
mation containing k segments and covering the discrete time window {1,..,i}: 
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The end of the recursion gives the optimal piecewise linear approximation, e.g. the 

set of discrete time locations of the extremity of the linear segments: 

The result of this method is the optimal identification of discrete XTi key-points – 

we call them spatial targets – delimitating the segments, for a given compression rate. 

The complexity of the algorithm is O(n
2
/k) where n is the number of samples, and k 

the number of segments, but can be decreased down to O(n) if optimality is somehow 

relaxed [6].  



 

An example of the application of the algorithm on 3D arm end-point data is illus-

trated in figure 1. 
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Fig. 1 Approximation of the end-point trajectory using the non uniform sampling algorithm  

4 Approximation of curvature and velocity using DPPLA model 

First of all we worked on 3D end point trajectories X(t) =[x(t), y(t), z(t)], the coordi-

nates being calculated in the shoulder frame. For any smooth trajectory parameterized 

with t, we expressed the instantaneous velocity v(t) and the absolute value of the in-

stantaneous curvature κ(t): 
 

 

 
 

where R is the radius of curvature. The curvature measures how fast a curve is chang-

ing direction at a given point.  

These variables have been extensively studied for a variety of goal-directed ex-

perimental tasks. In particular, a number of regularities have been empirically ob-

served for end-point trajectories of the human upper-limb, during 2D drawing move-

ments.  

However, for 3D movements with great spatial and temporal variations, it can be 

difficult to directly extract significant features from these signals. Moreover, comput-



 

ing the radius of curvature raises a problem, when the velocity is too high, or when 

there are inflexion points in the trajectories. In particular for noisy data the radius of 

curvature may be difficult to compute. Finally, for higher dimensions, the curvature is 

not defined, prohibiting its use in the angular space in particular.  

We propose to approximate these velocity and curvature by empirical measures 

calculated from the adaptive samples identified through the DPPLA algorithm. We 

define the target-based velocity by the expression: 
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where ni+1 and ni-1  are temporal indices of the associated targets Tgi+1 and Tgi-1.  

As the targets are not regularly located, the addition effect of this measure, homo-

geneous to a velocity, is to filter the raw data. The filtering depends on the compres-

sion rate. 

We define also the inverse distance between adjacent targets as: 
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With this formulation, we assume that this last quantity might be linked to a meas-

ure of aggregation points on the trajectory: when the movement velocity decreases, the 

distance between original samples decreases and the curvature appears to be impor-

tant. Therefore, κΤgi(ni) expresses a spatial quantity which might be correlated to cur-

vature at time-index ni.  

This approximation has been experimented on arm end-point motion. Raw data are 

first filtered by a low pass Butterworth filter with a cutoff frequency of 10.0 Hz. We 

consider sequences of about 10000 frames. 

The analysis of correlation is achieved, on the one hand between the log of target-

based velocity and the log of its instantaneous value, and on the other hand between 

the inverse of the distance between targets and the instantaneous curvature. The results 

concerning the velocity are shown in figure 2 (left). They illustrate an excellent corre-

lation between the two variables, thus allowing us to use target-based velocity as a 

good approximation of instantaneous velocity. We may also compute the acceleration 

of arm end-point trajectories on the basis of this target-based velocity.  

The correlation between the log of the inverse target distances and the log of its in-

stantaneous curvature is also very good, as illustrated in figure 2 (right). The points 

with abrupt changes are located at the same place, but the target-based signal seems 

less noisy than the original one. This makes possible to approximate curvature as the 

inverse of target density. 
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Fig. 2. Correlation for 3D end-point trajectories of arm movements; left: correlation between 

target-based velocity (black) and instantaneous tangential velocity (red); right: correlation 

between t arget density (black) and instantaneous curvature (red); 

For each signal x, we computed: (log(x) – mean(log(x)))/std(log(x)) 
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Fig. 3. Correlation coefficient versus compression rate of the adaptive sampling algorithm; 

(circle): curvature vs. inverse target distance; (star): acceleration vs. target based acceleration; 

(square): tangential velocity vs. target based velocity 

 

The influence of the compression factor characterizing the adaptive sampling algo-

rithm is analyzed at the light of the correlation coefficient. The results can be seen in 

figure 3. It shows that for the target-based velocity, the correlation coefficient remains 

very close to 1, independently of the compression rate (from 50% to 95%). For the 

target-based acceleration, the correlation coefficient is very good (0.9), for a compres-

sion rate varying until 70%. Beyond this limit, the correlation coefficient abruptly 

falls. The correlation coefficient is lower for the inverse distance, but still high (.85), 

even for a high compression rate (until 80%). These results support the assumption 

that target-based variables can be used without a significant loss of data for the analy-

sis of 3D end-point trajectories. 



 

5 Gesture segmentation and data-driven synthesis 

In this section, we explain how the non uniform sampling algorithm as well as the 

derived target-based cinematic measures (curvature and velocity) can be applied to 

both the automatic segmentation of gestures and the data-driven synthesis of gestures. 

5.2 Segmentation 

Studies on gesture [7] showed that human gestures can be segmented into distinct 

phases. Some researches assumed that objective measures can be used to segment 

hand movement. In particular, Kita et al. showed that abrupt changes of direction, 

accompanied by a velocity discontinuity indicate phase boundaries in hand trajecto-

ries. These observations have been exploited by [8], who proposed a new distance 

metric to detect phase boundaries, based on the sign of the first and second derivatives 

of endpoint trajectories. The analysis method described above can be used for auto-

matically segmenting the 3D arm motion. Moreover, it can be used for a compact 

gesture representation and for data-driven synthesis. 

Our segmentation is based on the observation that phase boundaries might occur 

when the radius of curvature becomes very small, and the velocity decreases at the 

same time, indicating a change of direction. The segmentation algorithm is based on 

the product variable v(t).κ(t), and on its approximation, based on the approximated 

target-based variables :  vTgi(ni).κTgi(ni).  

A color-coding method allows us to quantify the variations of the variable, accord-

ing to an equally distribution of its values. The meaning of this coding is presented in 

table 1.  

 
     Table1. Coding values for the color coding 

coding Variable val-

ues 

Interpretation 

black --- lowest values 

blue -- very low values 

cyan - low values 

green 0 average values 

yellow + high values 

magenta ++ very high values 

red +++ highest values 

 

The color-coding is reported on 3D trajectories, as can be seen in figure 4. When 

the velocity is very low, the color is green (clear gray). In the contrary, when the ve-

locity is high and the curvature low, the color is red (dark gray). The level of quantifi-

cation indicates the size of the segmental units. A great similarity can be observed 

between the segmentation of the curve v(t).κ(t) and vTgi(ni).κTgi(ni) (see figure 4 left and 

right).  
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Fig. 4. Example of end-point trajectories segmentation (in the xy plane) using a color-coding of 

quantified variables (different gray levels); left: segmentation using the product κ(t).v(t); right: 

segmentation using the product κTgi(t).vTgi(t); A great similarity between the two sequences can 

be observed. 

5.2 Gesture synthesis by inverse kinematics 

When applied to 3D end-point trajectories (hand motion), the discrete representation 

which is provided by the DPPLA algorithm gives a non uniform flow of 3D targets. 

Figure 5 shows the distribution of targets along the gesture sequence (top). The recon-

struction error between the sub-sampled trajectory and the original one is shown on 

figure 5 (bottom). 

 

 

 
Fig. 5 (top) Motion separation points assigned by the DPPLA algorithm. The x-axis corre-

sponds to the frame number, and the vertical bars specify the target points assigned by the 

algorithm; (bottom) Reconstruction error between target-based and simulated trajectory 

 

 

These targets can be directly used as input of an animation engine which automati-

cally computes the angular parameters of the articulated chain, given the end-

extremity position. This kinematics inversion process can be achieved in two ways, as 

illustrated in Figure 6.  



 

The first method consists in reconstructing the trajectory from the non uniform tar-

get flow, and then using a classical inverse kinematics (IK) [9, 10] model through a 

tracking process (Fig. 6 (left)). The reconstruction can be simply achieved by linear or 

cubic interpolation.  

The second method directly uses discrete time-stamped targets, which are fed into a 

GSMM controller [12, 13]. These controllers provide a means of dealing with co-

articulation. In the near future we intend to evaluate the quality of the produced 

movements according to specific compression rates and to compare the two methods. 
 

 
 

Fig. 6 Synthesis from non uniform targets, using a classical IK algorithm (left), or an adaptive 

GSMM controller (right) 

6 Conclusion and future work 

This paper presented a method for analyzing human motion based on an adaptive sub-

sampling technique that leads to reduce multidimensional data. This technique extracts 

discrete target patterns from raw data, for a given compression rate. From a 3D trajec-

tory, we showed that the target-based trajectory can be reconstructed while keeping 

the main spatial and cinematic characteristics of the original trajectory. 

The evaluation of the compression algorithm is performed using an approximation 

of the curvature and the velocity calculated along the motion sequence. We showed 

indeed that the target-based approximations are correlated with the instantaneous 

tangential velocity and curvature. They can therefore be used as an alternative to rep-

resent both the shape and the kinematics of end-point trajectories. Moreover, this 

representation can be adjusted by adapting the compression rate, according to its in-

fluence on the correlation.  

This method has proved to be efficient for 3D or 6D arm-trajectories. It is therefore 

an interesting method for the analysis of multidimensional data. These empirical ap-

proximations provide a significant way to automatically segment gestures. The meas-

ure that we propose, characterized by the product of the target-based velocity by the 

target-based curvature, gives us an original means of delimitating segments which 



 

depends on our algorithm parameterization (compression rate). A study in progress 

intends to determine how this automatic segmentation might help a manual segmenta-

tion process for communication gestures.  

The sub-sampling of the end-point trajectory also provides a way to reduce the in-

formation flow entering an inverse kinematics process. In the near future, we will 

show how to exploit this sub-sampling to deal with spatial variability and co-

articulation inherent to motion. 

References 

1. Chenevière, F., Boukir, S., Vachon, B. A HMM-based dance gesture recognition system. 

In: Proceedings of the 9th international workshop on systems, signals and image process-

ing, Manchester, UK, June 2002, pp. 322-326 

2. Boukir S.,  Chenevière F.: Compression and recognition of dance gestures using a de-

formable model, Pattern Analysis and Applications (PAA) Journal, Springer-Verlag, Vol. 

7, No 3, (2004) 308-316. 

3. Perez J.C., Vidal E.: Optimum polygonal approximation of digitized curves, Pattern Rec-

ognition Letters, Vol. 15. (1994) 743-750 

4. Goodrich M.T.: Efficient piecewise-linear function approximation using the uniform 

metric. Proceedings of the tenth annual symposium on Computational geometry Stony 

Brook, New York, United States, (1994) 322 – 331 

5. Agarwal P.K., Har-Peled S., Mustafa  N.H., Wang Y.: Near-Linear Time Approximation 

Algorithms for Curve Simplification Proceedings of the 10th Annual European Sympo-

sium on Algorithms (2002). 

6. Marteau, P.F., Ménier, G., Adaptive multiresolution and dedicated elastic matching in 

linear time complexity for time series data mining, Sixth International Conference on In-

telligent Systems Design and Applications (IEEE ISDA 2006), Jinan Shandong, China, 

16-18 October, 2006. 

7. Kita, S., van Gijn, I., van der Hulst, H. Movement phase in signs and co-speech gestures, 

and their transcriptions by human coders. Gesture and Sign Language in Human-

Computer Interaction, GW 1997, Bielefeld, Germany, Lecture Notes in Computer Science, 

I. Wachsmuth & al ed., Springer, Vol. 1371, pp. 23-35, 1998. 

8. A. Majkowska, V. Zordan, and P. Faloutsos. Automatic slicing for hand and body anima-

tions. Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2006), pp. 

1-8, M.P. Cani, J. O’Brien (Ed.) 

9. D. Chi, M. Costa, L. Zhao, and N. Badler: The EMOTE model for Effort and Shape, ACM 

SIGGRAPH '00, New Orleans, LA, (2000) 173-182 

10. S. Carvalho , R.Boulic, . Thalmann. “Interactive Low-Dimensional Human Motion Syn-
thesis by Combining Motion Models and PIK”, Journal of Computer Animation and Vir-

tual Worlds,Wiley, 2007 

11. S. Gibet S., P.F. Marteau P.F. A self-organised model for the control, planning and learn-
ing of nonlinear multivariable systems using a sensori- feedback, Journal of Applied Intel-

ligence,  Kluwer Academic Publisher, vol 4, Boston, 337-349, 1994. 

12. S. Gibet S., P.F. Marteau. Expressive Gesture Animation Based on Non Parametric Learn-
ing of Sensory-Motor Models, CASA 2003, IEEE Computer Animation and Social 

Agents, May 7-9, 2003. 


