Skip to main content

Versatile Design of Changing Mesh Topologies for Surgery Simulation

  • Conference paper
Biomedical Simulation (ISBMS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Included in the following conference series:

  • 1996 Accesses

Abstract

In the context of surgery simulation, this paper presents a generic and efficient solution to handle topological changes on deformable meshes under real-time constraints implemented in the SOFA [4] platform. The proposed design is based on a simulation tree gathering software components acting on a mesh. The mesh topology is described by a topological component which also provides algorithms for performing topological changes (cutting, refinement). An important aspect of the design is that mesh related data is not centralized in the mesh data structure but stored in each dedicated component. Furthermore, topological changes are handled in a transparent way for the user through a mechanism of propagation of topological events from the topological components toward other components. Finally, the previous concepts have been extended to provide multiple topologies for the same degrees of freedom. Examples of cataract surgery simulation based on this versatile design are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cgal : Computational geometry algorithms library, http://www.cgal.org

  2. Gipsi : General physical simulation interface, http://gipsi.case.edu

  3. Opentissue, http://www.opentissue.org

  4. Sofa : Simulation open framework architecture, http://www.sofa-framework.org

  5. Springs, http://spring.stanford.edu

  6. Agus, M., Gobbetti, E., Pintore, G., Zanetti, G., Zorcolo, A.: Real-time cataract surgery simulation for training. In: Eurographics Italian Chapter Conference, Catania, Italy, Eurographics Association (2006)

    Google Scholar 

  7. Allard, J., Cotin, S., Faure, F., Bensoussan, P.-J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa – an open source framework for medical simulation. In: Medicine Meets Virtual Reality (MMVR 1915), Long Beach, USA (February 2007)

    Google Scholar 

  8. Forest, C., Delingette, H., Ayache, N.: Removing tetrahedra from manifold tetrahedralisation: application to real-time surgical simulation. Medical Image Analysis 9(2), 113–122 (2005)

    Article  Google Scholar 

  9. Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Transactions on Graphics 23(3), 385–392 (2004)

    Article  Google Scholar 

  10. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Dingliana, J., Ganovelli, F. (eds.) Eurographics (short papers) (August 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

André, B., Delingette, H. (2008). Versatile Design of Changing Mesh Topologies for Surgery Simulation. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics