Skip to main content

Towards a Framework for Assessing Deformable Models in Medical Simulation

  • Conference paper
Biomedical Simulation (ISBMS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Included in the following conference series:

Abstract

Computational techniques for the analysis of mechanical problems have recently moved from traditional engineering disciplines to biomedical simulations. Thus, the number of complex models describing the mechanical behavior of medical environments have increased these last years. While the development of advanced computational tools has led to interesting modeling algorithms, the relevances of these models are often criticized due to incomplete model verification and validation. The objective of this paper is to propose a framework and a methodology for assessing deformable models. This proposal aims at providing tools for testing the behavior of new modeling algorithms proposed in the context of medical simulation. Initial validation results comparing different modeling methods are reported as a first step towards a more complete validation framework and methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A., Ellis, B., Weiss, J.: Verification, validation and sensitivity studies in computational biomechanics. Computer Methods in Biomechanics and Biomedical Engineering 10(3), 171–184 (2007)

    Article  Google Scholar 

  2. Alterovitz, R., Goldberg, K.: Comparing algorithms for soft tissue deformation: Accuracy metrics and benchmarks. Technical report, UC Berkeley (2002)

    Google Scholar 

  3. Bianchi, G., Solenthaler, B., Szkely, G., Harders, M.: Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 293–301. Springer, Heidelberg (2004)

    Google Scholar 

  4. van Gelder, A.: Approximate simulation of elastic membranes by triangulated spring meshes. Journal of Graphics Tools 3(2), 21–41 (1998)

    Google Scholar 

  5. Baudet, V., Beuve, M., Jaillet, F., Shariat, B., Zara, F.: Integrating tensile parameters in 3d mass-spring system. In: Proceedings of Surgetica (2007)

    Google Scholar 

  6. Kerdok, A., Cotin, S., Ottensmeyer, M., Galea, A., Howe, R., Dawson, S.: Truthcube: Establishing physical standards for real time soft tissue simulation. Medical Image Analysis 7, 283–291 (2003)

    Article  Google Scholar 

  7. Leskowsky, R., Cooke, M., Ernst, M., Harders, M.: Using multidimensional scaling to quantify the fidelity of haptic rendering of deformable objects. In: Proceedings of EuroHaptics, pp. 289–295 (2006)

    Google Scholar 

  8. Chabanas, M., Payan, Y., Marcaux, C., Swider, P., Boutault, F.: Comparison of linear and non-linear soft tissue models with post-operative ct scan in maxillofacial surgery. In: International Symposium on Medical Simulation, pp. 19–27 (2004)

    Google Scholar 

  9. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 5th edn. Butterworth-Heinemann (2000)

    Google Scholar 

  10. Allard, J., Cotin, S., Faure, F., Bensoussan, P.J., Poyer, F., Duriez, C., Delingette, H., Grisoni, L.: Sofa - an open source framework for medical simulation. In: Proceedings of Medecine Meets Virtual Reality, pp. 13–18 (2007)

    Google Scholar 

  11. Chabanas, M., Promayon, E.: Physical model language: Towards a unified representation for continuous and discrete models. In: Proceedings of International Symposium on Medical Simulation, pp. 256–266 (2004)

    Google Scholar 

  12. Picinbono, G., Delingette, H., Ayache, N.: Non-linear and anisotropic elastic soft tissue models for medical simulation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1370–1375 (2001)

    Google Scholar 

  13. Muller, M., Gross, M.: Interactive virtual materials. In: Proceedings of Graphics Interface, pp. 239–246 (2004)

    Google Scholar 

  14. Duriez, C., Cotin, S., Lenoir, J., Neumann, P.: New approaches to catheter navigation for interventional radiology simulation. Computer Aided Surgery 11(6), 300–308 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marchal, M., Allard, J., Duriez, C., Cotin, S. (2008). Towards a Framework for Assessing Deformable Models in Medical Simulation. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics