Skip to main content

Development of a Microscope Embedded Training System for Neurosurgery

  • Conference paper
Biomedical Simulation (ISBMS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Included in the following conference series:

Abstract

Virtual reality based training systems for surgery, have recently shown great potential as an alternative to traditional training methods. In neurosurgery, state of art training devices is limited to a few examples. They are based either on traditional displays or head-mounted displays. The aim of this research is the development of the first virtual reality training system for neurosurgical interventions based on a real surgical microscope for a better visual and ergonomic realism. The simulation takes advantage of an accurate tissue modeling, a force feedback device and a rendering of the virtual scene directly to the oculars of the operating microscope. A prototype of a stereoscopic Augmented Reality microscope for intra-operative presentation of preoperative three-dimensional data has been realized in our laboratory. We are reusing the image injection component of this existing platform developing a training system for educational and preoperative purposes based on virtual organs reconstructed from real patients’ images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ro, C.Y., et al.: The LapSim: A Learning Environment for Both Experts and Novices, Department of Surgery, St. Luke’s-Roosevelt Hospital Center and Columbia University, New York, New York, U.S.A (2005)

    Google Scholar 

  2. SurgicalScience (Status January 2008), http://www.surgical-science.com/

  3. Immersion (Status January 2008), http://www.immersion.com/

  4. Kühnapfel, U., Çakmak, K., Maass, H., Waldhausen, S.: Models for simulating instrument-tissue interactions, 9th Medicine Meets Virtual Reality 2001, Newport Beach, CA, USA (2001)

    Google Scholar 

  5. Goh, K.Y.C.: Virtual Reality Application in Neurosurgery. In: Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China (2005)

    Google Scholar 

  6. Wiet, G., Bryan, J., Sessanna, D., Streadney, D., Schmalbrock, P., Welling, B.: Virtual temporal bone dissection simulation. In: Westwood, J.D. (ed.) Medicine Meets Virtual Reality, Amsterdam, The Netherlands, pp. 378–384 (2000)

    Google Scholar 

  7. Sato, D., Kobayashi, R., Kobayashi, A., Fujino, S., Uchiyama, M.: Soft Tissue Pushing Operation Using a Haptic Interface for Simulation of Brain Tumor Resection. Journal of Robotics and Mechatronics 18, 634–642 (2006)

    Google Scholar 

  8. Luciano, C., Banerjee, P., Lemole, M.G., Charbel, F.:Second Generation Haptic Ventriculostomy Simulator Using the ImmersiveTouchTM System, Medicine Meets Virtual Reality 14, Long Beach, CA (2008)

    Google Scholar 

  9. Aschke, M., Wirtz, C.R., Raczkowsky, J., Wörn, H., Kunze, S.: Augmented Reality in Operating Microscopes for Neurosurgical Interventions. In: Wolf, L.J., Strock, J.L. (eds.) 1st International IEEE EMBS Conference on Neural Engineering, pp. 652–655 (2003)

    Google Scholar 

  10. 3DSlicer (status January 2008), http://www.slicer.org/

  11. Faro (status January 2008), http://www.faro.com

  12. H3D (status January 2008), http://www.h3dapi.org/

  13. X3D (status January 2008), http://www.web3d.org/x3d/

  14. Van den Bergen, G.: Collision Detection in Interactive 3D Environment. Elsevier Morgan Kaufmann Publishers, San Francisco (2004)

    Google Scholar 

  15. Miga, M.I., Roberts, D.W., Kennedy, F.E., Platenik, L.A., Hartov, A., Lunn, K.E., Paulsen, K.D.: Modeling of retraction and resection for intraoperative updating of images during surgery. In: Neurosurgery, vol. 49(1). Lippincott Williams & Wilkins, Hagerstown (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Mauro, A., Raczkowsky, J., Wirtz, R., Wörn, H. (2008). Development of a Microscope Embedded Training System for Neurosurgery. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics