Skip to main content

Graph Structure and Monadic Second-Order Logic: Language Theoretical Aspects

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

Abstract

Graph structure is a flexible concept covering many different types of graph properties. Hierarchical decompositions yielding the notions of tree-width and clique-width, expressed by terms written with appropriate graph operations and associated with Monadic Second-order Logic are important tools for the construction of Fixed-Parameter Tractable algorithms and also for the extension of methods and results of Formal Language Theory to the description of sets of finite graphs. This informal overview presents the main definitions, results and open problems and tries to answer some frequently asked questions.

Supported by the GRAAL project of “Agence Nationale pour la Recherche”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blumensath, A., Colcombet, T., Löding, C.: Logical Theories and Compatible Operations. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata: History and Perspectives, pp. 73–106. University Press, Amsterdam (2008)

    Google Scholar 

  2. Courcelle, B.: The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  3. Courcelle, B.: Graph Structure and Monadic Second-order Logic. Cambridge University Press, Cambridge (in preparation), http://www.labri.fr/perso/courcell

  4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (to appear)

    Google Scholar 

  6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Grohe, M.: Logic, Graphs, and Algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata: History and Perspectives, pp. 357–422. Amsterdam University Press (2008)

    Google Scholar 

  8. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  9. Makowsky, J.: Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure Appl. Logic 126, 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)

    Book  MATH  Google Scholar 

  11. Tutte, W.: Graph Theory. Addison–Wesley, Reading (1984)

    MATH  Google Scholar 

  12. Blumensath, A., Courcelle, B.: Recognizability, Hypergraph Operations, and Logical Types. Inf.Comput. 204, 853–919 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bodlaender, H.: Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Brandstädt, A., Dragan, F., Le, H., Mosca, R.: New Graph Classes of Bounded Clique-Width. Theory Comput. Syst. 38, 623–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brandstädt, A., Engelfriet, J., Le, H., Lozin, V.: Clique-Width for 4-Vertex Forbidden Subgraphs. Theory Comput. Syst. 39, 561–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: Progress on Perfect Graphs. Mathematical programming, Ser. B 97, 405–422 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Courcelle, B., Oum, S.: Vertex-minors, Monadic Second-Order Logic, and a Conjecture by Seese. J. Comb. Theory, Ser. B 97, 91–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Courcelle, B.: The Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures. Theor. Comput. Sci. 101, 3–33 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Courcelle, B.: The Monadic Second-Order Logic of Graphs X: Linear Orderings. Theor. Comput. Sci. 160, 87–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Courcelle, B.: The Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs. Theor. Comput. Sci. 224, 35–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Courcelle, B.: The Monadic Second-Order Logic of Graphs XII: Planar Graphs and Planar Maps. Theor. Comput. Sci. 237, 1–32 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Courcelle, B.: The Monadic Second-Order Logic of Graphs XIV: Uniformly Sparse Graphs and Edge Set Quantifications. Theor. Comput. Sci. 299, 1–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Courcelle, B.: The Monadic Second-Order Logic of Graphs XV: On a conjecture by D. Seese. J. Applied Logic 4, 79–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Courcelle, B.: The Monadic Second-Order Logic of Graphs XVI: Canonical graph decompositions. Logical Methods in Computer Science 2 (2006)

    Google Scholar 

  26. Courcelle, B.: Circle Graphs and Monadic Second-order logic. Journal of Applied Logic (in press)

    Google Scholar 

  27. Courcelle, B., Engelfriet, J.: A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars. Mathematical Systems Theory 28, 515–552 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-Rewriting Hypergraph Grammars. J. Comput. Syst. Sci. 46, 218–270 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Courcelle, B., Makowsky, J.: Fusion in Relational Structures and the Verification of Monadic Second-Order Properties. Mathematical Structures in Computer Science 12, 203–235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Courcelle, B., Makowsky, J., Rotics, U.: Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory Comput. Syst. 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Courcelle, B., Weil, P.: The Recognizability of Sets of Graphs is a Robust Property. Theor. Comput. Sci. 342, 173–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Courcelle, B., Walukiewicz, I.: Monadic Second-Order Logic, Graph Coverings and Unfoldings of Transition Systems. Ann. Pure Appl. Logic 92, 35–62 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cunnigham, W.: Decomposition of Directed Graphs. SIAM Algor. Discrete Meth. 3, 214–228 (1982)

    Article  MathSciNet  Google Scholar 

  34. Engelfriet, J., van Oostrom, V.: Logical Description of Contex-Free Graph Languages. J. Comput. Syst. Sci. 55, 489–503 (1997)

    Article  MATH  Google Scholar 

  35. Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Clique-width Minimization is NP-hard. In: 38th Annual ACM Symposium on Theory of Computing, pp. 354–362 (2006)

    Google Scholar 

  36. Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes. Theor. Comput. Sci. 37, 157–191 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Frick, M., Grohe, M.: The Complexity of First-order and Monadic second-order Logic Revisited. Ann. Pure Appl. Logic 130, 3–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gallai, T.: Transitiv Orientierbare Graphen. Acta Math. Acad. Sci. Hungar 18, 25–66 (1967); Translation in English by Maffray, F. Preissmann, M.: In: Ramirez Alfonsin,J.L., Reed, B.A.: (eds.), Perfect Graphs, pp. 25-66, Wiley, New York (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Grädel, E., Hirsch, C., Otto, M.: Back and Forth Between Guarded and Modal Logics. ACM Trans. Comput. Log. 3, 418–463 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lapoire, D.: Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  41. Hlinený, P., Oum, S.: Finding Branch-Decompositions and Rank-Decompositions. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–174. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  42. Klarlund, N.: Mona & Fido: The Logic-Automaton Connection in Practice. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  43. Madelaine, F.: Universal Structures and the Logic of Forbidden Patterns. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 471–485. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  44. Makowsky, J., Marino, J.: Tree-width and the Monadic Quantifier Hierarchy. Theor. Comput. Sci. 303, 157–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Makowsky, J., Pnueli, Y.: Arity and Alternation in Second-Order Logic. Ann. Pure Appl. Logic 78, 189–202 (1996); Erratum: Ann. Pure Appl. Logic 92, 215 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mezei, J., Wright, J.: Algebraic Automata and Context-Free Sets. Information and Control 11, 3–29 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nešetřil, J., de Mendez, P.O.: Linear Time Low Tree-width Partitions and Algorithmic Consequences. In: Proc. Symp. Theory of Computation, pp. 391–400 (2006)

    Google Scholar 

  48. Oum, S.: Rank-width and Vertex-minors. J. Comb. Theory, Ser. B 95, 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Oum, S., Seymour, P.: Approximating Clique-width and Branch-width. J. Comb. Theory, Ser. B 96, 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Robertson, N., Seymour, P.: Graph Minors. V. Excluding a Planar Graph. J. Comb. Theory, Ser. B 41, 92–114 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Robertson, N., Seymour, P.: Graph minors. VIII. A Kuratowski Theorem for General Surfaces. J. Comb. Theory, Ser. B 48, 255–288 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  52. Robertson, N., Seymour, P.: Graph Minors. XVI. Excluding a Non-planar Graph. J. Comb. Theory, Ser. B 89, 43–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Seese, D.: The Structure of Models of Decidable Monadic Theories of Graphs. Ann. Pure Appl. Logic 53, 169–195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  54. Soguet, D.: Génération Automatique d’Algorithmes Linéaires, Doctoral dissertation, Paris-Sud University, France (July 2008)

    Google Scholar 

  55. Wanke, E.: k-NLC Graphs and Polynomial Algorithms. Discrete Applied Mathematics 54, 251–266 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Courcelle, B. (2008). Graph Structure and Monadic Second-Order Logic: Language Theoretical Aspects . In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics