Abstract
Graph structure is a flexible concept covering many different types of graph properties. Hierarchical decompositions yielding the notions of tree-width and clique-width, expressed by terms written with appropriate graph operations and associated with Monadic Second-order Logic are important tools for the construction of Fixed-Parameter Tractable algorithms and also for the extension of methods and results of Formal Language Theory to the description of sets of finite graphs. This informal overview presents the main definitions, results and open problems and tries to answer some frequently asked questions.
Supported by the GRAAL project of “Agence Nationale pour la Recherche”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blumensath, A., Colcombet, T., Löding, C.: Logical Theories and Compatible Operations. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata: History and Perspectives, pp. 73–106. University Press, Amsterdam (2008)
Courcelle, B.: The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)
Courcelle, B.: Graph Structure and Monadic Second-order Logic. Cambridge University Press, Cambridge (in preparation), http://www.labri.fr/perso/courcell
Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (to appear)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Grohe, M.: Logic, Graphs, and Algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata: History and Perspectives, pp. 357–422. Amsterdam University Press (2008)
Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press, Oxford (2004)
Makowsky, J.: Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure Appl. Logic 126, 159–213 (2004)
Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)
Tutte, W.: Graph Theory. Addison–Wesley, Reading (1984)
Blumensath, A., Courcelle, B.: Recognizability, Hypergraph Operations, and Logical Types. Inf.Comput. 204, 853–919 (2006)
Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
Bodlaender, H.: Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg (2006)
Brandstädt, A., Dragan, F., Le, H., Mosca, R.: New Graph Classes of Bounded Clique-Width. Theory Comput. Syst. 38, 623–645 (2005)
Brandstädt, A., Engelfriet, J., Le, H., Lozin, V.: Clique-Width for 4-Vertex Forbidden Subgraphs. Theory Comput. Syst. 39, 561–590 (2006)
Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: Progress on Perfect Graphs. Mathematical programming, Ser. B 97, 405–422 (2003)
Courcelle, B., Oum, S.: Vertex-minors, Monadic Second-Order Logic, and a Conjecture by Seese. J. Comb. Theory, Ser. B 97, 91–126 (2007)
Courcelle, B.: The Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures. Theor. Comput. Sci. 101, 3–33 (1992)
Courcelle, B.: The Monadic Second-Order Logic of Graphs X: Linear Orderings. Theor. Comput. Sci. 160, 87–143 (1996)
Courcelle, B.: The Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs. Theor. Comput. Sci. 224, 35–58 (1999)
Courcelle, B.: The Monadic Second-Order Logic of Graphs XII: Planar Graphs and Planar Maps. Theor. Comput. Sci. 237, 1–32 (2000)
Courcelle, B.: The Monadic Second-Order Logic of Graphs XIV: Uniformly Sparse Graphs and Edge Set Quantifications. Theor. Comput. Sci. 299, 1–36 (2003)
Courcelle, B.: The Monadic Second-Order Logic of Graphs XV: On a conjecture by D. Seese. J. Applied Logic 4, 79–114 (2006)
Courcelle, B.: The Monadic Second-Order Logic of Graphs XVI: Canonical graph decompositions. Logical Methods in Computer Science 2 (2006)
Courcelle, B.: Circle Graphs and Monadic Second-order logic. Journal of Applied Logic (in press)
Courcelle, B., Engelfriet, J.: A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars. Mathematical Systems Theory 28, 515–552 (1995)
Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-Rewriting Hypergraph Grammars. J. Comput. Syst. Sci. 46, 218–270 (1993)
Courcelle, B., Makowsky, J.: Fusion in Relational Structures and the Verification of Monadic Second-Order Properties. Mathematical Structures in Computer Science 12, 203–235 (2002)
Courcelle, B., Makowsky, J., Rotics, U.: Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width. Theory Comput. Syst. 33, 125–150 (2000)
Courcelle, B., Weil, P.: The Recognizability of Sets of Graphs is a Robust Property. Theor. Comput. Sci. 342, 173–228 (2005)
Courcelle, B., Walukiewicz, I.: Monadic Second-Order Logic, Graph Coverings and Unfoldings of Transition Systems. Ann. Pure Appl. Logic 92, 35–62 (1998)
Cunnigham, W.: Decomposition of Directed Graphs. SIAM Algor. Discrete Meth. 3, 214–228 (1982)
Engelfriet, J., van Oostrom, V.: Logical Description of Contex-Free Graph Languages. J. Comput. Syst. Sci. 55, 489–503 (1997)
Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Clique-width Minimization is NP-hard. In: 38th Annual ACM Symposium on Theory of Computing, pp. 354–362 (2006)
Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes. Theor. Comput. Sci. 37, 157–191 (2004)
Frick, M., Grohe, M.: The Complexity of First-order and Monadic second-order Logic Revisited. Ann. Pure Appl. Logic 130, 3–31 (2004)
Gallai, T.: Transitiv Orientierbare Graphen. Acta Math. Acad. Sci. Hungar 18, 25–66 (1967); Translation in English by Maffray, F. Preissmann, M.: In: Ramirez Alfonsin,J.L., Reed, B.A.: (eds.), Perfect Graphs, pp. 25-66, Wiley, New York (2001)
Grädel, E., Hirsch, C., Otto, M.: Back and Forth Between Guarded and Modal Logics. ACM Trans. Comput. Log. 3, 418–463 (2002)
Lapoire, D.: Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)
Hlinený, P., Oum, S.: Finding Branch-Decompositions and Rank-Decompositions. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–174. Springer, Heidelberg (2007)
Klarlund, N.: Mona & Fido: The Logic-Automaton Connection in Practice. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidelberg (1998)
Madelaine, F.: Universal Structures and the Logic of Forbidden Patterns. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 471–485. Springer, Heidelberg (2006)
Makowsky, J., Marino, J.: Tree-width and the Monadic Quantifier Hierarchy. Theor. Comput. Sci. 303, 157–170 (2003)
Makowsky, J., Pnueli, Y.: Arity and Alternation in Second-Order Logic. Ann. Pure Appl. Logic 78, 189–202 (1996); Erratum: Ann. Pure Appl. Logic 92, 215 (1998)
Mezei, J., Wright, J.: Algebraic Automata and Context-Free Sets. Information and Control 11, 3–29 (1967)
Nešetřil, J., de Mendez, P.O.: Linear Time Low Tree-width Partitions and Algorithmic Consequences. In: Proc. Symp. Theory of Computation, pp. 391–400 (2006)
Oum, S.: Rank-width and Vertex-minors. J. Comb. Theory, Ser. B 95, 79–100 (2005)
Oum, S., Seymour, P.: Approximating Clique-width and Branch-width. J. Comb. Theory, Ser. B 96, 514–528 (2006)
Robertson, N., Seymour, P.: Graph Minors. V. Excluding a Planar Graph. J. Comb. Theory, Ser. B 41, 92–114 (1986)
Robertson, N., Seymour, P.: Graph minors. VIII. A Kuratowski Theorem for General Surfaces. J. Comb. Theory, Ser. B 48, 255–288 (1990)
Robertson, N., Seymour, P.: Graph Minors. XVI. Excluding a Non-planar Graph. J. Comb. Theory, Ser. B 89, 43–76 (2003)
Seese, D.: The Structure of Models of Decidable Monadic Theories of Graphs. Ann. Pure Appl. Logic 53, 169–195 (1991)
Soguet, D.: Génération Automatique d’Algorithmes Linéaires, Doctoral dissertation, Paris-Sud University, France (July 2008)
Wanke, E.: k-NLC Graphs and Polynomial Algorithms. Discrete Applied Mathematics 54, 251–266 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courcelle, B. (2008). Graph Structure and Monadic Second-Order Logic: Language Theoretical Aspects . In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-70575-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70574-1
Online ISBN: 978-3-540-70575-8
eBook Packages: Computer ScienceComputer Science (R0)