
INSTITUT FÜR INFORMATIK

Approximation Algorithms for

Scheduling Parallel Jobs: Breaking the

Approximation Ratio of 2

Klaus Jansen and Ralf Thöle

Bericht Nr. 0808

September 2008

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Approximation Algorithms for Scheduling

Parallel Jobs: Breaking the Approximation Ratio

of 2

Klaus Jansen and Ralf Thöle

Bericht Nr. 0808

September 2008

e-mail: kj@informatik.uni-kiel.de, rth@informatik.uni-kiel.de

Approximation Algorithms for

Scheduling Parallel Jobs: Breaking the

Approximation Ratio of 2*

Klaus Jansen Ralf Thöle
Institut für Informatik

Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany

Email: {kj, rth}@informatik.uni-kiel.de

In this paper we study variants of the non-preemptive parallel job schedul-
ing problem in which the number of machines is polynomially bounded in the
number of jobs. For this problem we show that a schedule with length at most
(1+ ε)OPT can be calculated in polynomial time. Unless P = N P , this is the
best possible result (in the sense of approximation ratio), since the problem is
strongly NP-hard.

For the case, where all jobs must be allotted to a subset of consecutive ma-
chines, a schedule with length at most (1.5+ε)OPT can be calculated in poly-
nomial time. The previously best known results are algorithms with absolute
approximation ratio 2.

Furthermore, we extend both algorithms to the case of malleable jobs with
the same approximation ratios.

1 Introduction

In classical scheduling theory, each job is executed by only one processor at a time. In
the last years however, due to the rapid development of parallel computer systems, new
theoretical approaches have emerged to model scheduling on parallel architectures (for

*An extended abstract of this paper appeared in proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming (ICALP 2008), LNCS 5125, 234–245. Springer, 2008.
Research was supported by PPP funding “Approximation algorithms for d-dimensional packing problems”
315/ab D/05/50457 granted by the DAAD, and by EU research project AEOLUS, Algorithmic Principles for
Building Efficient Overlay Computers, EU contract number 015964.

1

an overview about scheduling of multiprocessor jobs on such parallel architectures see for
example [4, 7, 23]).

In this paper, we study variants of the non-preemptive parallel job scheduling problem.
An instance of this problem is given by a list L := {J1, . . . , Jn} of jobs and for each job J j an
execution/processing time p j and the number of required machines q j is given. A sched-
ule S = ((s1,r1), . . . , (sn ,rn)) is a sequence of starting times s j ≥ 0 together with the set of
assigned machines r j ⊆ {1, . . . ,m} (|r j | = q j) for j ∈ {1, . . . ,n}. A schedule is feasible if each
machine executes at most one job at the same time. The length of a schedule is defined
as its latest job completion time Cmax = max

{
s j +p j | j ∈ {1, . . . ,n}

}
. The objective is to find

a feasible schedule of minimal length. This problem is denoted by P |size j |Cmax (for more
information on this three field notation see for example [7]).

1.1 Known Results

P |size j |Cmax is strongly NP-hard, since the problem P5|size j |Cmax, where the number of
available processors is 5, is NP-hard in the strong sense [8]. Furthermore, there is no ap-
proximation algorithm with a performance ratio better than 1.5 for P |size j |Cmax [20], unless
P = NP.

The best known algorithm with polynomial running time for this problem was implic-
itly given by Garey and Graham [11]. They proposed a list-based algorithm with approx-
imation ratio 2 for a resource-constrained scheduling problem. In this scheduling prob-
lem one or more resources are given and each job requires a certain amount of each re-
source for the duration of its execution time. As pointed out by Ludwig & Tiwari [24] this
resource-constrained scheduling problem can be used to model P |size j |Cmax by using the
available processors as the single resource. The existence of a polynomial time approxi-
mation scheme (PTAS) for the case that the number of available processors is a constant,
Pm|size j |Cmax, was presented in [1, 15].

A problem closely related to P |size j |Cmax is the strippacking problem (i.e. packing of rect-
angles in a strip of width 1 while minimizing the packing height). The main difference is
that machines assigned to a job need to be contiguous in a solution of the strippacking
problem. Turek et al. [30] pointed out that using contiguous machine assignments is desir-
able in some settings; for example to maintain a physical proximity of processors allotted to
a job. This contiguous case is known under different names in the literature, amongst oth-
ers: scheduling on a line, P |line j |Cmax, or non-fragmentable multiprocessor system. In the
literature, even further models are considered to model the underlying network topology,
such as meshes or hypercubes. Note that the one-dimensional mesh corresponds to the
line model, whereas the two-dimensional mesh corresponds to three-dimensional strip-
packing (see for example [9, 10, 3, 31]). One of the first results for the strippacking problem
was given by Coffman et al. [5]. They proved that the level-based algorithms NFDH (Next
Fit Decreasing Height) and FFDH (First Fit Decreasing Height) algorithms have an approx-
imation ratio of 3 and 2.7 respectively. The currently best known algorithms with absolute
approximation ratio 2 were given independently by Schiermeyer [27] and Steinberg [29].
Coffman et al. [5] also analyzed the asymptotic performance of NFDH and FFDH, which is
2 ·OPT+hmax and 1.7 ·OPT+hmax respectively, where OPT is the height of an optimal solu-

2

tion and hmax denotes the height of the tallest rectangle. An AFPTAS for the strippacking-
problem was presented by Kenyon & Rémila [21]. Only recently, Jansen and Solis-Oba [17]
presented an asymptotic polynomial time approximation scheme (APTAS) with additive
term 1 at the cost of a higher running time.

A similar problem is the scheduling of so-called malleable jobs, where the number of
required machines for each job is not known a priori; the execution time of each job de-
pends on the number of allotted machines. That is, instead of p j , q j each job J j has an
associated function p j : {1, . . . ,m} → Q+ that gives the execution time p j (`) of that job in
terms of the number ` of processors that are assigned to J j . For this scheduling problem
Ludwig & Tiwari [24] presented an algorithm with approximation ratio 2. Jansen & Porko-
lab [15] developed an approximation scheme with linear running time for both malleable
jobs and non-malleable jobs as long as the number of machines is constant. For the case
that preemptions are allowed (jobs can be interrupted at any time at no cost and restarted
later on a possibly different set of processors) Jansen & Porkolab [16] provide an optimal
algorithm with running time polynomial in m and linear in n. Mounié et al. [25] present
an (1.5+ε) approximation algorithm for scheduling a set of independent monotonic mal-
leable jobs, where the machines allotted to each job have consecutive addresses. Implicitly,
this algorithm requires the number of machines to be polynomially bounded in the num-
ber of jobs, since the running time of the algorithm depends on the number of machines.
Decker et al. [6] presented a 1.25-approximation for scheduling n independent identical
malleable jobs on p identical processors (the jobs are called identical if the execution time
on any number of processors is the same for all jobs). In [13], Jansen presented an asymp-
totic fully polynomial time approximation scheme (AFPTAS) for scheduling malleable jobs
on an arbitrary number of machines.

In the literature, a lot of scheduling problems with additional constraints are studied.
Numerous publications deal with so called online scheduling of parallel jobs (for a survey
see [28]). In online scheduling, not all informations about the instance are known a priori,
e.g. unknown release dates, unknown running times (see for example [26, 31]). Another
often studied type of constraint are so-called precedence constraints, where a job can only
be scheduled for execution if all of its predecessors have already completed their execution
(see for example [2, 18, 19, 22]). In many papers also combinations of different constraints
are studied; for example in [3, 9, 10]) online scheduling with precedence constraints is stud-
ied. Note that in [9, 10] results for different network topologies such as PRAM, line, meshes,
hypercubes are presented; in [3] hypercubes and arrays are considered as underlying net-
work topology; in [31] hypercubes are considered.

1.2 New Results

In this paper, we focus on the natural case where the number of machines is polynomially
bounded in the number of jobs (in most scenarios the number of machines will be even
smaller than the number of jobs). We will denote this problem by Ppoly|size j |Cmax or by
Ppoly|line j |Cmax in the contiguous case. Using a reduction from 3-PARTITION [12, SP15] ,
it is easy to see that these problems are strongly NP-hard.

3-PARTITION: Given an integer value B and a list of n = 3k integers si with B
4 < si < B

2

3

and
∑n

i=1 si = kB . The objective is to find a partition into k subsets where each subset has
sum B . Note that the above constraints on the values imply that every subset must contain
exactly three integers.

The reduction works as follows. We set the number of machines to B , and introduce n
jobs Ji , each with processing time pi := 1 and number of required machines qi := si . If there
is a schedule of length k, we have a solution for 3-PARTITION. On the other hand, if there
is a solution to 3-PARTITION there exists a schedule of length k. Since 3-PARTITION is NP-
hard in the strong sense, the problem is also NP-hard for instances where all numbers are
polynomially bounded in n. In particular, all instances in which B is polynomially bounded
in n are NP-hard.

For the case that all machines assigned to a job have contiguous addresses, we show the
existence of an algorithm with approximation ratio arbitrarily close to 1.5.

Theorem 1. For every ε > 0 there exists an algorithm A such that for every instance I of
Ppoly|line j |Cmax

A(I) ≤ (1.5+ε)OPT(I)

holds and the running time is polynomial in n, where A(I) is the length of the schedule for
instance I generated by algorithm A and OPT(I) is the length of an optimal schedule for
instance I .

The previous best known result for this problem is a 2-approximation algorithm by Lud-
wig & Tiwari [24]. The algorithm for scheduling monotonic malleable jobs presented by
Mounié et al. [25] with approximation ratio (1.5+ε) makes use of the monotonic character
and thus is not applicable to the non-malleable case. Interestingly, the result is otherwise
very similar. They also generate a schedule with contiguous machine addresses and they
also (implicitly) assume that the number of machines is polynomially bounded in the num-
ber of jobs since the running time depends on the number of machines.

This result holds also for the strippacking problem if we restrict the instances such that
the width of each rectangle is a multiple of 1/m for some integer value m that is polynomially
bounded in the number of rectangles.

In the general case (non-contiguous addresses) we show the existence of a polynomial
time approximation scheme (PTAS).

Theorem 2. For every ε > 0 there exists an algorithm A such that for every instance I of
Ppoly|size j |Cmax

A(I) ≤ (1+ε)OPT(I)

holds and the running time is polynomial in n, where A(I) is the length of the schedule for
instance I generated by algorithm A and OPT(I) is the length of an optimal schedule for
instance I .

The previous best known result for this problem is the above mentioned 2-approxima-
tion algorithm for the resource-constrained scheduling problem by Garey & Graham [11].
Other algorithms with absolute approximation ratio lower than 2 presume that the number
of machines is a constant.

4

Furthermore, we show in section 6, how these results can be extended to the malleable
case (with the same approximation ratios), even if the execution time of the jobs is not
monotone. This result cannot be obtained by applying the framework described by Ludwig
& Tiwari [24], since the analysis of the approximation ratio of our algorithm is not based on
lower bounds that are required for their framework.

For the non-contiguous case these are the best possible results (in the sense of approxi-
mation ratio), since the problem is NP-hard in the strong sense for both the malleable and
the non-malleable case.

1.3 Structure

We start this paper with a short outline of the algorithms in section 2. In section 3, we
present an algorithm to pack rectangles into a constant number of bins. This algorithm
will be used as subroutine in the following scheduling algorithms. In section 4, we present
the algorithm for scheduling jobs on machines with contiguous addresses. We present the
scheduling algorithm for the case that the machines allotted to each job are not required to
have contiguous addresses in section 5. In section 6, we show how the algorithms for the
non-malleable cases can be extended to solve the corresponding malleable versions with
the same approximation ratio. We conclude with open problems in section 7.

2 Outline of the Algorithms

Before we go into the details, we give a short outline of the algorithms.
A crucial part of the algorithms is to schedule critical jobs (jobs with long execution time

or large number of required processors) nearly optimal. This is done by enumerating a
polynomial number of schedules for the critical jobs. To ensure that there is at least one
schedule among these that allows a nearly optimal solution, we have to reduce the search
space. Therefore, we show that it is possible to modify an optimal schedule such that the
resulting schedule is nearly optimal and has a simpler structure.

To be more specific, the first step in our algorithms is to guess (enumerate) the approxi-
mate value of an optimal solution (sections 4.1.1, 5.1.1, 6.1.1). This allows us to divide the
solution into a constant number of slots with height depending on the accuracy. After that,
we partition the set of jobs. The purpose of this step is to create a gap in size (processing
time / number of required machines) between big and small jobs. This is done by discard-
ing middle-sized jobs (sections 4.1.2, 5.1.2, 6.1.2). We schedule all discarded jobs using a
greedy algorithm in a post-processing step. Then, we round the long jobs (sections 4.1.3,
5.1.3, 6.1.3) and define containers into which we place (some of) the short jobs. From here
on the algorithms for the non-contiguous and the contiguous case differ significantly. For
the contiguous case we guess (enumerate) a set of containers. Since the actual packing
algorithm cannot guarantee to schedule all long jobs, a crucial step is to take care of jobs
with running time > 1/2 (section 4.2.3). We then solve a linear program (section 4.3) and
use its solution to create the actual schedule for the containers and for a subset of the long

5

jobs (section 4.4). The scheduling of short jobs inside the container is done by a modified
version of the algorithm by Kenyon & Rémila [21] (section 4.4.6).

For the non-contiguous case we show that the long jobs can be scheduled in a canonical
way (section 5.3) and use a dynamic program to assign the long jobs to slots (section 6.2).
The scheduling of the short jobs is again done by using the modified version of the algo-
rithm by Kenyon & Rémila (section 5.4).

The extension to the malleable cases is done by choosing an assignment of jobs to a
number of machines in a first phase (section 6). After that the solution can be found by
applying the algorithms used for the non-malleable cases.

3 Packing into a Constant Number of Bins

In the following, we present a modification of the algorithm by Kenyon and Rémila in [21],
which we will call mKR. Instead of packing into one target strip, we want to pack into a
constant number of bins with different sizes. We show that under certain assumptions (see
(A1)–(A6)) almost all rectangles can be packed into the bins, i.e. the rectangles that are not
packed have small total area.

Let C = {C1, . . . ,Ck } be a set of k bins. We assume that all bins have width and height
bounded by 1. Let L = {R1, . . . ,Rn} denote the set of rectangles and let L = Lsm ∪Lwi be a
partition of the set of rectangles into wide and small rectangles and define

• hw
max := max

R∈Lwi
h(R), w w

min := min
R∈Lwi

w(R), w w
max := max

R∈Lwi
w(R),

• hs
max := max

R∈Lsm
h(R), w s

max := max
R∈Lsm

w(R).

With h(Q),w(Q) we denote the height and the width of a rectangle Q or a bin Q, respectively.
Furthermore, we denote with A(Q) := h(Q)w(Q) the area of Q. We extend the notations to
sets in the straight-forward manner (for example A(C) =∑

C∈C A(C)).
Let c,δ> 0. With the following assumptions we can formulate the theorem.

There exists a packing of Lwi into the bins C , (A1)

A(L) ≤ A(C), (A2)

w w
min ≥ δ, (A3)

w s
max ≤

1

k

δ

7
, (A4)

hw
max ≤

δ

7
min

{
1

k
, w w

min
δ

7

}
, (A5)

hs
max ≤

δ

7
min

{
1

4k
, w w

min
δ

4 ·7

}
. (A6)

Theorem 3. Under the assumptions (A1)–(A6) there exists an algorithm with running time
polynomial in n,k and 1/δ2 that packs almost all rectangles into the bins, i.e. the unpacked
rectangles have total area at most δA(L) if A(L) ≥ 1 or δ otherwise.

In the following sections, we briefly describe the algorithm.

6

...

0 h′
m̂

1 h′
m̂

2 h′
m̂

m̂ h′
m̂

(m̂ −1) h′
m̂

h′

(a) Grouping

...

0 h′
m̂

h′

(b) Rounding rectangles, Lsup

Figure 1: Grouping of wide rectangles

3.1 Grouping and Rounding

In order to simplify the problem, we transform the rectangles from Lwi into a set Lsup that
consists only of rectangles with m̂ (a constant depending on w w

min) different widths. This
transformation is similar to the grouping technique used by Kenyon and Rémila in [21].
Note that this simplification is feasible, since it is not necessary to pack the rectangles op-
timally.

First we order all rectangles from Lwi by non-increasing width. Then we stack them left-
aligned on top of each other, resulting in a stack of height h′ = h(Lwi) (see figure 1a). Next we
draw horizontal cutting lines at heights i (h′/m̂) for i ∈ {0, . . . ,m̂} across the stack. We say that
rectangle R ∈ Lwi belongs to group i , if its upper side uR satisfies i (h′/m̂) < uR ≤ (i +1)(h′/m̂).

We generate Lsup by rounding up the width of each rectangle Ri ∈ Lwi such that its width
is the same as the width of the widest rectangle belonging to the same group (see figure 1b).
Since all wide rectangles are packable (Assumption (A1)) we can ensure the existence of
a feasible fractional packing for Lsup by removing all rectangles intersecting [0, w w

max] ×
[0, h′/m̂]. These intersecting rectangles have total area bounded by

V1 :=
(

h′

m̂
+hw

max

)
w w

max ≤
h′

m̂
+hw

max.

The feasibility follows bascially by area arguments; since the width of each rectangle in
group i is smaller than the width of each rectangle in group (i − 1), all rectangles can be
packed (at least fractionally) into the space occupied by rectangles from the next lower
group.

3.2 Fractional Binpacking

To find a fractional packing for Lsup we use basically the same linear program as in [21].
The main difference is that

• we have a set of configurations for each bin instead of one set of configurations, and

• we need k constraints in addition to the m̂ constraints in [21].

7

The k additional constraints ensure that the total height of the configurations for each bin
does not exceed the height of the bin. The m̂ original constraints ensure that all rectangles
are covered (one constraint for each group of rectangles). Thus, instead of m̂ constraints
we have m̂+k constraints and solving the linear program results in at most m̂+k variables
with non-zero value instead of m̂ non-zero variables.

Since we assume that all wide rectangles are packable (Assumption (A1)) and since we
discarded all rectangles intersecting [0, w w

max]× [0, h′/m̂], there exists a feasible (fractional)
solution for the rounded instance.

3.3 Packing the Rectangles

Each of the m̂ +k non-zero variables corresponds to one of the configurations. In order to
generate a packing, we define layers inside each bin with height corresponding to the value
of the variables. In contrast to the algorithm by Kenyon and Rémila we do not increase the
height of the layers.

The space for each layer can now be divided into the left side with width equal to the
width of the corresponding configuration and the right side, which will be used for packing
the rectangles from Lsm.

The packing of the rectangles from Lsup, or rather the packing of the rectangles from Lwi,
is done in the same way as in [21], but since we have not increased the height of the layers,
the topmost rectangles might be overlapping into the next layer or over the upper border of
the bin. In order to make the packing feasible, we simply remove all overlapping rectangles.
The rectangles removed in this step have total area bounded by

V2 := (m̂ +k)(1 ·hw
max),

since the height of each of these rectangles is bounded by hw
max and the width of each layer

is bounded by 1 and the number of layers is bounded by m̂ +k.
The rectangles from Lsm will be added by a modified version of the Next Fit Decreasing

Height (mNFDH) algorithm. After ordering Lsm by non-increasing height, we use NFDH
layer by layer. Note that we add an additional layer for each bin, if the upper border of the
last layer is below the upper border of this bin. Furthermore, we add an additional layer if
the space reserved by a configuration is not completely packed. Since this can only happen
if there are not enough rectangles belonging to a specific group, we get at most m̂ additional
layers. Thus, in total we pack the low rectangles into at most 2m̂ +k layers.

If all of Lsm is packed by the mNFDH algorithm the total area of all unpacked rectangles is
bounded by V1+V2. Otherwise, we have to calculate how much of the total area of all bins is
covered by the (fractionally) packed rectangles from Lwi and by the packed rectangles from
Lsm in order to get an upper bound for the total area of the remaining rectangles from Lsm.

Obviously, the wasted space on the right side of each bin and layer is bounded by the
width of the small rectangles (since we use NFDH); this bound holds even for the last layer,
since not all rectangles could be packed. Additionally, we can guarantee for each layer
(including the additional layers) that an area with height corresponding to the height of
the layer minus two times the height of the tallest rectangles from Lsm is covered, i.e. the

8

uncovered space is bounded in total by

V3 := h(C)w s
max right side

+ (2m̂ +k +k)2hs
max upper bound for uncovered area for each layer

≤ kw s
max + (2m̂ +2k)2hs

max.

In total, we obtain as upper bound for the total area of all unpacked rectangles

V1 +V2 +V3 = h′

m̂
+hw

max + (m̂ +k)(1 ·hw
max)+kw s

max + (2m̂ +2k)2hs
max

≤ A(L)

w w
minm̂

+hw
max + (m̂ +k)(1 ·hw

max)+kw s
max + (2m̂ +2k)2hs

max

(A5)≤ A(L)

w w
minm̂

+ δ

7
+m̂hw

max +
δ

7
+kw s

max +4m̂hs
max +4khs

max

(A4),(A6)≤ A(L)

w w
minm̂

+ δ

7
+m̂hw

max +
δ

7
+ δ

7
+4m̂hs

max +
δ

7
.

Choosing m̂ := 7
δw w

min

(A3)≤ 7
δ2 , this equals

= A(L)
δ

7
+ 4δ

7
+ 7

δw w
min

hw
max +

4 ·7

δw w
min

hs
max

(A5),(A6)≤ A(L)
δ

7
+ 4δ

7
+ 7

δw w
min

δ

7
w w

min
δ

7
+ 4 ·7

δw w
min

δ

7
w w

min
δ

4 ·7

= A(L)
δ

7
+ 4δ

7
+ δ

7
+ δ

7

= A(L)
δ

7
+ 6δ

7

≤
{
δ if A(L) ≤ 1

δA(L) if A(L) ≥ 1.

The running time of our algorithm is polynomial in n,k and 1/δ2. For a detailed analysis of
the running time we refer the reader to the analysis used in [21]. The main difference is the
number of configurations and the additional k constraints.

This proves Theorem 3.

4 Contiguous Parallel Job Scheduling

In this section, we present the algorithm for scheduling parallel jobs such that the machines
assigned to a job have contiguous indices, Ppoly|line j |Cmax. Note that the algorithm pre-
sented in this section uses some of the techniques presented in [17]. The main difference
concerns jobs with processing time > 1/2. Our modifications ensure that no job with pro-
cessing time > 1/2 is discarded.

9

Since each job is required to be executed on contiguous machines, an instance of this
problem can be translated directly into a strippacking instance; for each job Ji create a
rectangle Ri = (wi ,hi) of width wi = qi/m and height hi = pi (where qi is the number of
required machines and pi is the execution time of Ji). We scale the width of Ri by 1/m, such
that the target strip in the resulting strippacking instance has width 1. The objective is then
to find an orthogonal, axis parallel arrangement of all rectangles into a strip of width 1 and
minimal height (without rotations). Thus, the strippacking and the scheduling notation
can be used synonymously in the contiguous case. In this paper (especially in this section),
we will use the strippacking notation since this notation is more descriptive. The non-
contiguous case can also be viewed as strippacking problem if fragmentation of rectangles
is allowed in one dimension (width).

Obviously, a solution for the contiguous case is a feasible solution for the non-contiguous
case. However, an optimal solution for the contiguous case is in general not optimal for
the non-contiguous case. Turek et al. [30] presented an example instance that shows that
the length of an optimal schedule for the non-contiguous case can be shorter than for the
contiguous case.

4.1 Near-Optimal Schedule with Simple Structure

In the following, we describe the construction of a nearly optimal solution with simple
structure based on a given optimal solution. This simply-structured solution is similar to
the solution constructed in [17]. The main difference is that here we make sure that the
total area of the discarded jobs is small, while the total profit of the discarded rectangles is
small in the construction in [17].

In the following, let 0 < ε ≤ 1 be the required accuracy and let L = {R1, . . . ,Rn} be an in-
stance of Ppoly|line j |Cmax. For each rectangle (job) Ri let wi be its width (number of pro-
cessors qi/m) and let hi be its height (execution time pi). A packing (schedule) P for instance
L is given as a set of pairs P = {(x1, y1), . . . , (xn , ym)}, where each pair (xi , yi) ∈ R2

≥0 denotes
the position of the lower left corner of rectangle Ri in the strip. Note that in this case the
representation of the schedule by a packing is sufficient, since the subset of assigned pro-
cessors is well-defined by the first assigned processor. We assume that the lower left corner
of the strip coincides with the origin of a Cartesian system of coordinates. A packing P
is valid if the rectangles do not overlap and xi + wi ≤ 1 for all i ∈ {1, . . . ,n}. The height of
packing P is given by

h(P) := max
i∈{1,...,n}

(yi +hi).

4.1.1 Bounded Height

Since we want to divide the solution into a constant number of slots, we need to know the
height of an optimal solution, at least up to the required accuracy ε.

By using the strippacking algorithm of Steinberg [29], we can find a solution for the strip-
packing instance with height v ≤ 2 ·OPT, where OPT is the height of an optimal solution.

10

Obviously, there exists a value

v∗ ∈
{

(1+0ε)
v

2
,(1+1ε)

v

2
, . . . , (1+

⌈
1

ε

⌉
ε)

v

2

}
such that OPT ≤ v∗ ≤ (1+ε)OPT; we only have to consider d1/εe+1 different candidates to
find the right one. For simplicity we divide the height of each rectangle by v∗, such that the
height OPT′ := OPT

v∗ of an optimal solution for the scaled instance satisfies

1−ε< 1−ε
1−ε2

= 1

1+ε = OPT

(1+ε)OPT
≤ OPT

v∗ ≤ 1.

In the following, we show the existence of an algorithm that packs all rectangles of a
scaled instance into a strip of height at most (1+ε+1/2) (see section 4.5). This height bound
is sufficient to prove Theorem 1, since rescaling yields

v∗
(
1+ε+ 1

2

)
≤ (1+ε)OPT

(
3

2
+ε

)
=

(
3

2
+ 5ε

2
+ε2

)
OPT

≤ (1.5+4ε)OPT.
(1)

In the following, we assume that the instance is already scaled such that an optimal pack-
ing P∗ has height h(P∗), where (1−ε) < h(P∗) ≤ 1.

4.1.2 Partitioning the Set of Rectangles/Creating a Gap

In this section, we create a gap between tall and low rectangles and between wide and nar-
row rectangles. To create this gap we need to remove some of the rectangles. The following
lemma proves that the rectangles we remove have small total area.

Let ε′ be the largest value of the form ε′ = 1/(2a) for an integer a such that ε′ ≤ ε/15. Let

σ0 := 1,σ1 := ε′, and σk := (σk−1)
8/σ3

k−1 for all k ≥ 2. Define

L>1/2 :=
{

Ri ∈ L | hi > 1+2ε′

2

}
,

and

Lk := {
Ri ∈ L \ L>1/2 | wi ∈ (σk ,σk−1] or hi ∈ (σk ,σk−1]

}
.

Define for each subset L′ ⊆ L the total area of L′ by A(L′) =∑
Ri∈L′(wi ·hi).

Lemma 4. There exists k ∈ {2, . . . , 2/ε′+1} such that

A(Lk) ≤ ε′A(L).

Proof. Since each rectangle belongs to at most two sets Lk ,∑
j∈{2,..., 2

ε′+1}

A(L j) ≤ 2A(L).

Obviously, there exists k ∈ {2, . . . , 2/ε′+1} with A(Lk) ≤ ε′/2 ·2A(L) = ε′A(L), since otherwise∑
j∈{2,..., 2

ε′+1}

A(L j) > 2

ε′
ε′A(L) = 2A(L). 2

11

Choose the smallest value k satisfying the conditions of Lemma 4 and define δ := σk−1

and s := 8/δ3 and γ := δs =σk .

Note 5. Since 1
ε′ is integral, 1

σi
is integral for all i ∈N and thus δ and γ,δs are integral.

For simplicity, we define the following sets and call rectangles belonging to each set ac-
cordingly

Lta := {Ri ∈ L | hi > δ} tall rectangles

Llo := {
Ri ∈ L | hi ≤ δs} low rectangles

Lwi := {Ri ∈ L | wi > δ} wide rectangles

Lna := {
Ri ∈ L | wi ≤ δs} narrow rectangles.

Note that L = (Lta ∪Llo ∪Lwi ∪Lna)∪Lk and (Lta ∪Llo ∪Lwi ∪Lna)∩Lk = ; and L>1/2 ⊆ Lta.
We will denote the subset of low-wide rectangles in the following with Llo-wi := Llo ∩Lwi.
For the following steps, we discard the middle-sized rectangles Lk . They will be packed in a
post-processing step by a simple greedy algorithm (see section 4.5).

4.1.3 Rounding and Shifting Tall Rectangles

A crucial part of our simple structure are the positions and heights of the tall rectangles.
Let P be an optimal packing for all rectangles L. First we increase the height of each tall
rectangle Ri ∈ Lta to the nearest (integral) multiple of δ2. Then, we shift the rectangles
up such that all rectangles Ri ∈ Lta have their corners placed at points (x ′

i , y ′
i), such that

there exist integral values ki with x ′
i = xi and y ′

i = kiδ
2 (see figure 2). These modifications

increase the height of the solution by at most 2δ.

Lemma 6. Let P be a packing for all rectangles L with h(P) ≤ 1. At the cost of an increase in
height of at most 2δ we can round up all tall rectangles to the nearest multiple of δ2 and we
can shift the rectangles such that the lower left corner of all tall rectangles is a multiple of δ2.

Proof. Let P be a packing for all rectangles L with h(P) ≤ 1. Let (xi , yi) be the position that
P assigns to each rectangle Ri and let zi := yi +hi be the upper bound of Ri in P . Multiply
each zi by 1+2δ; that is, we shift up all rectangles depending on their upper bound without
changing their size or the feasibility of the packing. Obviously, this modification increases
the height of the packing by at most 2δh(P) ≤ 2δ. Since tall rectangles have height at least
δ this shifting creates a gap with height at least

zi (1+2δ)− zi = zi 2δ≥ 2δ2

below each tall rectangle. Thus, rounding up the size of each tall rectangle to the next mul-
tiple of δ2 (without changing zi) and shifting down each tall rectangle to a multiple of δ2

does not change the feasibility of the packing. 2

12

0

iδ2

(i +1)δ2

1

(a) Original packing

1+δ2

1+2δ2

tall rectangles

low-wide rect-
angles

(b) Packing with simpler structure

Figure 2: Rounding and shifting rectangles

After scaling and rounding the set of tall rectangles can be partitioned into a constant
number of subsets. Define

Ita :=
{

1

δ
+ i | i ∈N : 1 ≤ i ≤ 1−δ

δ2

}
and (2)

I>1/2 :=
{

1+ε′
2δ2

+ i | i ∈N : 1 ≤ i ≤ 1−2ε′

2δ2

}
and (3)

L(i) := {
Ri ∈ L | hi = i ·δ2} . (4)

Lemma 7. The set of all tall rectangles can be partitioned into a constant number of subsets:

Lta =
⋃̇

i∈Ita

L(i) and (5)

L>1/2 = ⋃̇
i∈I>1/2

L(i). (6)

In particular, the number of partitions of Lta and L>1/2 are bounded by |Ita| = 1−δ
δ2 ≤ 1

δ2 and

|I>1/2| = 1−2ε′
2δ2 ≤ 1

2δ2 , respectively.

Proof. Obviously for all i , j ∈ Ita, i 6= j : L(i)∩ L(j) = ;. Due to the scaling, the height of
each rectangle is at most 1 and since 1/δ is integral (see Note 5), this bound still holds after
rounding. After rounding, each tall rectangle has height aδ2 for an integer value a. Let
Ri ∈ Lta. Then δ < h(Ri) ≤ 1 and since δ is a multiple of δ2, the smallest possible value for
h(Ri) is

δ+δ2 =
(

1

δ
+1

)
δ2.

13

The biggest possible value for h(Ri) is

1 = δ+1−δ= δ2

δ
+ (1−δ)δ2

δ2
=

(
1

δ
+ 1−δ

δ2

)
δ2.

Since all multiples of δ2 between these bounds are contained in Ita,

Lta =
⋃̇

i∈Ita

L(i).

If Ri ∈ L>1/2 then 1+2ε′
2 < h(Ri) ≤ 1. Since 1

ε′ is an even integer and δ2 is a multiple of ε′, 1+2ε′
2

is a multiple of δ2. The smallest possible value for h(Ri) is

1+2ε′

2
+δ2 =

(
1+2ε′

2δ2
+1

)
δ2.

The biggest possible value for h(Ri) is

1 = 1+2ε′+1−2ε′

2
=

(
1+2ε′

2δ2
+ 1−2ε′

2δ2

)
δ2.

Again, since all multiples of δ2 between these bounds are contained in I>1/2,

L>1/2 = ⋃̇
i∈I>1/2

L(i). 2

4.1.4 Containers for Low Rectangles

Since we want to increase only the height but not the width of the packing, we cannot round
up the widths of the wide rectangles in order to reduce the complexity. Instead we intro-
duce containers, into which all low-wide (Llo-wi) and a subset of the low-narrow rectangles
will be packed.

Consider a scaled and shifted packing P . Draw horizontal lines spaced by a distance
δ2 across the strip (due to the rounding and shifting, the lower and upper sides of the tall
rectangles coincides with two of these lines). These lines split the strip into at most (1+2δ)/δ2

horizontal rectangular regions that we call slots (see figure 2). A container is a rectangular
region inside a slot whose left boundary is either the right side of a tall rectangle or the left
side of the strip, and whose right boundary is either the left side of a tall rectangle or the
right side of the strip. In the following, we consider only containers that contain at least one
low-wide rectangle. In figure 3 for example, we have two containers that contain low-wide
rectangles.

Lemma 8. Let P be a scaled and shifted packing for all rectangles L. The number of contain-
ers which contain at least one low-wide rectangle is bounded by 2

δ3 .
In particular, the number of all possible sets of containers (containing at least one low-

wide rectangle) is polynomial in n.

14

tall rectangles

low-wide rectangles

container

Figure 3: Container for low rectangles

Proof. The height of each container is δ2 by definition. Since each container in considera-
tion contains at least one low-wide rectangle the width of each container is at least δ. Thus,
the total number of containers (containing at least one low-wide rectangle) is bounded by

(1+2δ)
1

δ ·δ2
≤ 2

1

δ3
.

Furthermore, the width of each container is a multiple of 1/m, since in each packing (sched-
ule) xi is a multiple of 1/m for each rectangle Ri and the width wi is a multiple of 1/m. Thus,
the width of each container is in {

1

m
, . . . ,

m

m

}
.

Therefore, a rough upper bound for the number of different sets of containers is (m +1)
2
δ3

(encode each set as a 2
δ3 -tupel, where each entry denotes the width of the corresponding

container or 0 if it is not in the set). Note that in general this number will be (much) smaller,
since the ordering is not relevant and the width of each container containing a low-wide
rectangle is > 1/δ. Since we assume that m is polynomial in n, the number of all possible
sets of containers (containing at least one low-wide rectangle) is polynomial in n. 2

Since the number of different sets of containers is polynomial, we can find a set cor-
responding to the set induced by an optimal packing by enumerating all possible sets of
containers in polynomial time.

4.1.5 Properties / Summary

In summary, we have shown in this section that an optimal packing P for rectangle set L
with height bounded by 1 can be transformed into a packing P̂ for rectangle set L̂ with
height at most 1+2δ and simple structure, as follows

(a) every tall rectangle Ri in L̂ has its height rounded up to the nearest multiple of δ2 and
its lower border is at a position yi that is a multiple of δ2 (see Lemma 6),

(b) each container C containing at least one low-wide rectangle has height δ2 and width
i · 1/m ≥ δ where i ≤ m is a non-negative integer (see section 4.1.4),

15

(c) there is in gap in size between tall and low rectangles and between wide and narrow
rectangles (see Lemma 4),

(d) the total area of the discarded rectangles is bounded, A(L \ L̂) ≤ ε′/2 and the height of
each discarded rectangle is bounded by (1+2ε′)/2, since we did not discard any rectangles
belonging to L>1/2 (see section 4.1.2).

4.2 Pre-Positioning

The next step is to determine the positions of the containers and a subset of the tall rectan-
gles. On the one hand we have to make sure that all rectangles we are discarding have height
bounded by 1/2; otherwise, the NFDH algorithm used to pack all discarded rectangles dur-
ing post-processing produces a packing of height > 1/2, leading to an overall approximation
ratio greater than 1.5+ε′. On the other hand we have to make sure that the pre-positioning
has a polynomial running time. In particular, we can only enumerate the positions of a
constant number of tall rectangles and containers.

From here on let C be the (current) set of containers and let L′
ta ⊆ Lta \ L>1/2 be the sub-

set of K tall rectangles with largest area for some constant K , which we will define in sec-
tion 4.4.4; we set L′

ta := Lta \ L>1/2 if |Lta \ L>1/2| ≤ K . Furthermore, let

L′ =C ∪L′
ta

be the union of the set of containers and the chosen subset of at most K tall rectangles.
Note that since |C | ≤ 2δ−3 (see Lemma 8),

|L′| ≤ K +2δ−3. (7)

In order to determine the positions of the rectangles from L′, first we guess (enumer-
ate) assignments of the K tall rectangles L′

ta and of the containers C to slots and snapshots.
Then we describe a dynamic program that assigns the tall rectangles from L>1/2 to snap-
shots without enumerating all possibilities, since there might be too many of them. Using
these assignments we set up a linear program (LP). If this LP has a solution, we have found
a fractional solution for the packing problem. Furthermore, if almost all low-wide rectan-
gles fit into the containers, we show that the fractional solution can be transformed into a
feasible integral solution by discarding some rectangles with small total area.

4.2.1 Slot Assignment

We split again the strip into horizontal slots of height δ2. A slot assignment for L′ is a map-
ping f : L′ → M where M = {1, . . . , (1+2δ)/δ2} corresponds to the set of slots. For a given slot
assignment f the set of slots that will be used for packing a rectangle R j ∈ L′ is given by
{ f (R j), . . . , f (R j)+γ j −1}, where γ jδ

2 = h j is the height of rectangle R j (in particular γ j ≥ 1/δ
for each Ri ∈ Lta, since h j > δ, and γ j = 1 if R j is a container). Since the number of different
mappings f is bounded by

|M ||L′| ≤
(

1+2δ

δ2

)K+2δ−3

(8)

16

t0 t1 t2 t3 t4 t5 t6t7t8

R1

R2

tall rectangles ∈ L′

container (∈ L′)

rectangles ∈ L> 1
2

Figure 4: Packing of rectangles and containers and induced snapshots

and thus constant, we can consider all mappings f in polynomial time and try to find a
packing for L that is consistent with f for each mapping.

4.2.2 Snapshots

In order to handle the x position of the rectangles, we introduce snapshots. We use the
snapshots to model the relative horizontal positions of all rectangles in L′.

Consider a packing for L′. Trace vertical lines extending the sides of the rectangles in L′

(see figure 4). The region between two adjacent lines is called a snapshot. If we index all
snapshots from left to right, every rectangle R j ∈ L′ appears in a sequence of consecutive
snapshots Sα j , . . . ,Sβ j , where α j denotes the index of the first snapshot in which rectangle
R j occurs andβ j denotes the index of the last snapshot. In figure 4 for example rectangle R1

is contained in snapshot S1, while R2 is contained in snapshots S2,S3,S4, thus α1 = 1,β1 =
1,α2 = 2 and β2 = 4. More formal, an assignment of all rectangles in L′ to snapshots is given
by two functions α,β : L′ → {1, . . . , g }, where g denotes the number of snapshots.

Since |L′| ≤ K +2δ−3 (Equation (7)) the maximum number of snapshots g in any packing
for L′ is at most

g ≤ 2|L′| ≤ 2(K +2δ−3), (9)

and thus the number of different assignments of L′ to snapshots is polynomial, O(g 2|L′|).

4.2.3 Dynamic Program for L>1/2-rectangles

In general, we cannot consider all assignments of rectangles in L>1/2 to snapshots, because
there might be up to n rectangles in L>1/2. In the following, we introduce an algorithm that
allows us to enumerate a subset of all snapshot assignments for L>1/2 such that the size of

17

the subset is polynomially bounded in n and there exists one snapshot assignment in this
subset that is equivalent to a snapshot assignment induced by an optimal packing.

Rectangles in L>1/2 that intersect more than one snapshot are handled separately (see
end of section), since our packing algorithm can only be used for tall rectangles that do not
intersect more than one snapshot.

As already mentioned in section 4.1.3, L>1/2 can be partitioned into sets L(i) for all i ∈ I>1/2

such that L>1/2 = ⋃̇
i∈I>1/2 L(i) (see Equation (3) and (6)) and

|I>1/2| = 1−2ε′

2δ2
< 1

2δ2
. (10)

Consider a packing of all rectangles and snapshots as defined above. Then we can define
a vector v i = (v i

1, . . . , v i
g) for each height iδ2, i ∈ I>1/2, where v i

j ∈ {0, . . . ,m} is chosen such

that v i
j · 1/m is the sum of widths of all rectangles of height iδ2 contained in snapshot S j .

Obviously, ∑
i∈I>1/2

g∑
j=1

v i
j

1

m
=∑
Ri∈L>1/2

wi ≤ 1 (11)

(otherwise the packing is not feasible) and thus, we have

v i
j ≤ m (12)

for each i ∈ I>1/2, j ∈ {1, . . . , g }.
With a dynamic programming approach we can compute a list of all feasible vectors sat-

isfying (11) and (12). A rough upper bound for the number of feasible vectors for each
height iδ2 is given by (m + 1)g since there are g components and every component v i

j ∈
{0, . . . ,m}. The algorithm to calculate all feasible vectors for a given height iδ2 works as
follows.

Assume that L(i) = {R1, . . . ,Rki }. Starting with a set V := {(0, . . . ,0)} containing only the
null vector we replace in step l ∈ {1, . . . ,ki } each vector v ∈ V with all vectors that can be
generated by adding γl := wl · m to one of its components. To ensure that the number
of vectors is bounded by (m +1)g , we discard any vector that equals (componentwise) an
already added vector. This can be done efficiently by keeping the list sorted (for example in
lexicographical order). Since in each step at most g (m +1)g vectors are generated and the
number of operations used for the insertion (insertion sort with binary search) is bounded
by log((m +1)g) = g log(m +1), the number of operations for each step is bounded by

g (m +1)g · g log(m +1) ≤ g 2(m +1)g+1.

Thus, the number of operations for each height i ∈ I>1/2 is bounded by

ki · g 2(m +1)g+1 ≤ m · g 2(m +1)g+1 ≤ g 2(m +1)g+2,

since
ki = |L(i)| ≤ |L>1/2| ≤ m.

18

Let V i denote the set of vectors generated for this height class L(i). Obviously, the vector
induced by a given packing can be found among the generated vectors.

Repeating this computation for every i ∈ I>1/2 leads to |I>1/2| ≤ 1/(2δ2) sets of at most (m +
1)g vectors. We build the direct product V :=�i∈I>1/2 V i of these sets. V contains at most

|V | ≤ ((m +1)g)|I | ≤ ((m +1)g)
1

2δ2 (13)

elements and each of these elements consists of one vector for each height class. One el-
ement v ∈ V corresponds to the vectors induced by the given packing. In our packing al-
gorithm we guess an element v ∈ V consisting of components v i , i ∈ I>1/2 and use these
vectors v i to pack the tall rectangles into the snapshots. Note that in practice we do not
need the direct product, we can simply enumerate all elements in an arbitrary order. We
use this notation only for convenience.

Using the dynamic program results in (many) vectors of widths only. However, for our
packing algorithm we need to know what combination of rectangles leads to the given
width per snapshot. This can be achieved by extending the dynamic program such that
for each vector a component consists not only of the current width, but also of a set of
rectangles. During the vector generation step, a rectangle is added to this set if its width is
added to the corresponding width component. Due to this modification the space needed
to store the vectors increases but is still polynomial in n; the running time of the dynamic
program is not affected significantly.

In order to handle rectangles intersecting snapshot boundaries, we simply guess the sub-
set L̂ ⊆ L>1/2 of rectangles intersecting snapshot boundaries, which can be done in polyno-
mial time since there are at most g of these rectangles. In order to pack these rectangles we
add them to L′ (the set of K tall rectangles and containers). This modification increases the
size of L′ such that

|L′| ≤ 3 · (K +2δ−3), (14)

and of g such that

g ≤ 6(K +2δ−3). (15)

Note that this modification does not increase the dimension of the vectors we defined
above, since the snapshots introduced by these added rectangles obviously do not allow
further L>1/2 rectangles to be packed in them (height > 1/2).

As stated above, among all generated vectors there is one that is equivalent to the vector
induced by a nearly optimal schedule with simpler structure. They are equivalent in the
sense that the total width in each component is in both vectors the same. For our algorithm
this is sufficient, since our packing algorithm ensures that all rectangles assigned to one
component are packed next to each other (see sections 4.4.1, 4.4.2).

4.3 Linear Program

In this subsection, we present a linear program (LP), which allows us to calculate the width
of all snapshots, and thus determine the positions of all rectangles in L′ = C ∪ L′

ta. We

19

now assume that we have chosen a slot assignment f (see section 4.2.1), functionsα,β (see
section 4.2.2), and v ∈V consisting of vectors v i of widths for each height class as described
in section 4.2.3.

Since all low-wide rectangles and a subset of the low-narrow rectangles get packed into
the containers, we do not need to consider them in the LP. For convenience we call the
subset of the low-narrow rectangles packed into the containers LC

lo-na, and the remaining
low-narrow rectangles Llo-na. We construct LC

lo-na by greedily adding low-narrow rectangles
as long as

A(LC
lo-na)+A(Llo-wi) ≤ A(C). (16)

We discard the first low-narrow rectangle that exceeds the total area in order to ensure that
enough space can be reserved for the remaining rectangles in the following LP. This dis-
carded rectangle has an area of at most δ2s . In fact, we will show that this discarded rectan-
gle can be packed along with the rectangles from Llo-na (see section 4.4.5).

Since f ,α,β are fixed, we can calculate the set of free slots (i.e. the slots not occupied by L′

rectangles) for each snapshot. These free slots will be used for the remaining tall rectangles
and for the small rectangles from Llo-na. In order to formulate constraints to ensure that
enough space is reserved for these rectangles, we introduce configurations. We define a
configuration as a pair (SN,Π) where SN is a subset of the free slots reserved for rectangles
from Llo-na and Π is a partition of the remaining free slots into sets of consecutive slots
reserved for rectangles from Lta \ L′; every subset F ∈Π of cardinality l = |F | is reserved to
pack rectangles from Lta of height lδ2. Let n j denote the number of different configurations

for each snapshot S j and let c j
i := (SN j

i ,Π j
i) denote the different configurations for snapshot

S j , i ∈ {1, . . . ,n j } and let n j
i (`) := |{F ∈Π j

i : |F | = `}| denote the number of sets of cardinality

` in Π j
i for each ` ∈ Ita. The total width of all rectangles in Lta \ L′ of height ` is denoted

as W`. The variables x j
i , j ∈ {1, . . . , g }, i ∈ {1, . . . ,n j } are used to determine the width of each

configuration c j
i . Additional variables t j , j ∈ {1, . . . , g } are used to determine the width of

each snapshot S j .

LP(f ,α,β, v) : t0 = 0, tg ≤ 1

t j ≥ t j−1 ∀ j ∈ {1, . . . , g }

tβ j − tα j = w j ∀R j ∈ L′ (17)
n j∑

i=1
n j

i (`)x j
i ≥ 1

m
v`j ∀ j ∈ {1, . . . , g },` ∈ I>1/2 (18)

g∑
j=1

n j∑
i=1

n j
i (`)x j

i ≥W` ∀` ∈ Ita \ I>1/2 (19)

g∑
j=1

n j∑
i=1

x j
i |SN j

i |δ2 ≥ A(Llo-na) (20)

n j∑
i=1

x j
i ≤ t j − t j−1 ∀ j ∈ {1, . . . , g } (21)

x j
1 , . . . , x j

n j
≥ 0 ∀ j ∈ {1, . . . , g }

20

Constraint (17) ensures that the width of the snapshots corresponds to the width of the as-
signed pre-positioned rectangles or containers. Constraint (18) makes sure that the total
width of all configurations in each snapshot is greater or equal than the width needed for
packing the rectangles from L>1/2 as given by the vector v . Similarly, constraint (19) ensures
that the chosen configurations reserve enough space to pack all rectangles from Lta \ L′ (at
least fractionally). Constraint (20) ensures that enough space is reserved for (fractionally)
packing the rectangles from Llo-na. Constraint (21) makes sure that the width of all config-
urations for a snapshot does not exceed the width of that snapshot.

Since g ,n j , |L′|, |J |, |I | are independent of n, this linear program can be solved in poly-
nomial time. If LP(f ,α,β, v) has no feasible solution, we construct a new LP with a new
combination of C , f ,α,β, v .

4.4 Packing the Rectangles

Let (t∗, x∗) be a feasible solution for LP(f ,α,β, v). For simplicity, we remove all snapshots
[t∗j , t∗j+1) of zero width and combine all snapshots that do not contain any L′ rectangles, i.e.
the set of free slots is F = M (remember that M corresponds to the set of all slots), as the
last snapshot. Obviously the modified solution is still feasible. Let g∗ denote the number
of resulting snapshots.

Since we solve the LP fractionally, the solution might contain configurations with widths
that are not multiples of 1/m. Nevertheless, in the following we pack the rectangles using
this fractional solution. If the resulting packing is not feasible, we can add a simple post-
processing step in which we shift all rectangles beginning with the leftmost, bottommost
infeasible rectangle Ri (position (xi , yi)), such that xi is a multiple of 1/m. This shifting
is possible since all rectangles which are positioned left of Ri start at a feasible position
and have a width that is a multiple of 1/m. Repeating this shifting step for each infeasible
rectangle leads to a feasible packing.

4.4.1 Adapting and Sorting the Con�gurations

Before we start packing the rectangles, we sort and modify the configurations inside each
snapshot (see figure 5). The objective is to make sure that on the one hand no rectangles
from L>1/2 get split and, on the other hand that the fragmentation of the slots reserved for
the low-narrow rectangles is limited. In each snapshot, we first sort all configurations based
on the number of slots reserved for rectangles from L>1/2. After this sorting, all configura-
tions reserved for rectangles from L>1/2 of the same height appear next to each other. Note
that the sorting is well-defined, since in each configuration at most one subset of contigu-
ous slots is reserved for rectangles from L>1/2, and they cannot appear on top of each other
(height > (1+2ε′)/2). Furthermore, we need to modify the configurations such that the slots
reserved for rectangles from L>1/2 of the same height are the same. In each snapshot all
configurations cover the same subset of slots (all slots save the slots occupied by the pre-
positioned rectangles from L′) and obviously, there is at most one contiguous subset Π′ of
these covered slots that can contain slots reserved for rectangles from L>1/2. Now we mod-
ify each configuration that contains a subset Π′′ ⊆Π′ reserved for rectangles from L>1/2, by

21

(a) Original configura-
tions

(b) Configurations
sorted by slots for L>1/2

rectangles ∈ L>1/2

rectangles ∈ Lta \ L′

rectangles ∈ Llo-na

container/rectangles ∈ L′

(c) Configurations sorted by slots for L>1/2 and Llo-na

Figure 5: Adapting configurations

shifting Π′′ inside Π′ as far down as possible. The resulting configuration does not change
the solution of our LP, since no assumptions about the locations of the reserved slots are
made. But now packing the L>1/2 rectangles next to each other will not lead to splittings (see
figure 5).

To limit the fragmentation of the slots reserved for low-narrow rectangles, we place con-

figurations with the same set SN j
i of slots reserved for low-narrow rectangles next to each

other, but without disturbing the previous sorting.

4.4.2 Packing Pre-Positioned Rectangles

Each rectangle Ri ∈ L′ is placed in the slots assigned by function f such that its left side is at
distance t∗αi

from the left side of the strip, i.e. the position (lower left corner) for Ri is given
by (t∗αi

, f (Ri)δ2). In particular, no rectangle from L′ is split in this process.
The next step is to pack the L>1/2 rectangles. Since the solution is feasible, in each snap-

shot S j the widths of the configurations that are reserved for the L>1/2 rectangles are at least

22

t1 t2 t3 t4 t5t6

tall rectangles ∈ L′

container ∈ L′

tall rectangles ∈ L> 1
2

Figure 6: Packing of pre-positioned rectangles

as large as the widths given by vector v j (see constraint (18)). Furthermore, due to the or-
dering of the configurations within each snapshot, we can simply pack all these rectangles
next to one other according to the configurations. Due to the ordering described in the pre-
vious subsection (section 4.4.1), the packing of the tall rectangles and the containers has a
structure as in figure 6.

4.4.3 Tall Rectangles

The next step is to pack the remaining tall rectangles. Let Rl = {Rl ,1, . . . ,Rl ,nl } = L(l) \ L′ ⊆
Lta \ L′ be the rectangles of height lδ2 for every l ∈ Ita \ I>1/2. Take the first configuration

c j
i = (SN j

i ,Π j
i) in the above ordering with x j

i > 0 and select for each set X ∈Π j
i with l = |X |

successively the first not yet completely packed rectangle R ∈ Rl . These rectangles are

packed within the slots X starting at position x(c j
i) until their total width is at least x j

i or all

rectangles in Rl are packed. If the total width is greater than x j
i the last rectangle is split

such that the width is exactly x j
i . Repeating the packing process for each configuration

in each snapshot leads to a fractional packing of all tall rectangles, since (19) ensures that
there is sufficient space reserved for them.

This fractional packing of tall rectangles allows a certain number of tall rectangles to get
split. In the following, we show that the number of these split rectangles is bounded and
that the total area of these rectangles is at most δ.

The splitting of rectangles is caused by the transition from one subset X of slots to the
next as described above. Thus, the number of split rectangles is bounded by the number
of subsets of slots in each configuration times the number of configurations per snapshot
times the number of snapshots. The number of subsets of slots in each configuration is
bounded by |M | (M corresponds to the set of all slots). For each snapshot there are at most
(2|M |)|M | different configurations, since the number of all subsets of the set of slots is 2|M |

and the number of partitions of M is bounded by |M ||M |. In total, this leads to at most

g∗|M |(2|M |)|M | divided rectangles. Note that the number of chosen configurations (x j
i 6= 0)

23

is bounded by the number of constraints in the LP. Thus, the number of split rectangles is
possibly much lower. Since g∗ ≤ g ≤ 6(K +2δ−3) (see Equation (15)), the number of split
rectangles is bounded by

g∗|M |(2|M |)|M | ≤ 6(K +2δ−3)|M |(2|M |)|M |. (22)

With this bound for the number of split tall rectangles, we only have to choose the constant
K such that the total area of split tall rectangles is bounded by 2δ, which will be done in the
next subsection.

4.4.4 Choosing Constant K

In order to choose a constant K such that the total area of the split tall rectangles is bound-
ed, we use a slightly modified version of a result by Jansen and Porkolab [14, Lemma 2.5].

Lemma 9 ([14]). Suppose d1 ≥ d2 ≥ ·· · ≥ dn ≥ 0 is a sequence of real numbers and D =∑n
j=1 d j . Let p, q be nonnegative integers, α > 0, and assume that n > (

⌈ 1
α

⌉
p +1)(q +1)

⌈ 1
α

⌉
.

Then, there exists an integer k = k(p, q,α) such that

dk +·· ·+dk+p+qk−1 ≤αD

and
k ≤ (q +1)

⌈ 1
α

⌉−1 +p
(
1+ (q +1)+·· ·+ (q +1)

⌈ 1
α

⌉−2
)

. (23)

Proof. Decompose the sum d1 +·· ·+dn into blocks B0 = d1 +·· ·+d f (1)−1,B1 = d f (1) +·· ·+
d f (2)−1, . . .Bi = d f (i) +·· ·+d f (i+1)−1, where the function f is defined recursively by the fol-
lowing equation:

f (0) = 1, f (i +1) = f (i)+p +q · f (i). (24)

Since
∑n

j=1 d j = D , at most
⌈ 1
α

⌉− 1 blocks are larger in size than α ·D . Now let i be the

smallest integer for which Bi ≤αD . Then i ≤ ⌈ 1
α

⌉−1, and Bi = d f (i) +·· ·+d f (i+1)−1 ≤α ·D .
This implies that there is an index k ≤ f (i) such that dk +·· ·+dk+p+qk−1 ≤α ·D . It follows
from (24) that

f (i) = (q +1)i +p
(
1+ (q +1)+·· ·+ (q +1)i−1

)
, (25)

which along with the bound on i implies (23). 2

We choose d j = w j ·h j for each R j ∈ Lta (sorted by non-increasing area), and define α :=
δ, and p := 6|M |2δ−3(2|M |)|M |, and q := 6|M |(2|M |)|M |. Then D ≤ 1+2δ, since A(L) ≤ 1+2δ

(see section 4.1.5). If |Lta| ≤ (
⌈ 1
α

⌉
p +1)(q +1)

⌈ 1
α

⌉
, we can add dummy rectangles with area

0. Note that the algorithm would also work without this modification, since the number
of tall rectangles would be constant in this case and thus all tall rectangles could be pre-
positioned. However, this would make the following proofs more complicated.

Lemma 9 yields that there exists a constant K such that for each set L̂ ⊆ Lta \ L̃ with |L̂| ≤
p + qK , the total area of L̂ is bounded by |L̂| ≤ α ·D ≤ δ(1+ 2δ) = δ+ 2δ2 ≤ 2δ, if L̃ ⊆ Lta

contains the K rectangles with largest area. Furthermore,

K ≤ (1+2δ−3)(6|M |(2|M |)|M |)
1
δ−1, (26)

24

since

k ≤ (q +1)
⌈ 1
α

⌉−1 +p
(
1+ (q +1)+·· ·+ (q +1)

⌈ 1
α

⌉−2
)

= (q +1)
⌈ 1
α

⌉−1 +p
(q +1)

⌈ 1
α

⌉−1 −1

(q +1)−1

≤ (q +1)
⌈ 1
α

⌉−1 + p

q
(q +1)

⌈ 1
α

⌉−1

= (1+ p

q
)(q +1)

⌈ 1
α

⌉−1

= (1+ 6|M |2δ−3(2|M |)|M |

6|M |(2|M |)|M |)(6|M |(2|M |)|M |)
1
δ−1

= (1+2δ−3)(6|M |(2|M |)|M |)
1
δ−1.

Since the number of split rectangles is at most

g |M |(2|M |)|M | ≤ 6|M |(K +2δ−3)(2|M |)|M |

= 6|M |2δ−3(2|M |)|M |+6|M |(2|M |)|M |K
= p +qK

and the K rectangles with largest profit (L′
ta) are not split (see section 4.4.2), Lemma 9 yields

that the total area of split rectangles is at most 2δ.

4.4.5 Packing the Low-Narrow Rectangles

The next step is to pack the subset Llo-na of the low-narrow rectangles that are not assigned

to the containers. Due to the ordering, configurations c j
i with the same set SN j

i of slots
reserved for low-narrow rectangles are adjacent (if possible). In the following, we combine
adjacent reserved slots into blocks. Then, if we pack the Llo-na rectangles only into blocks of
width at least 4δs−3, we can pack almost all rectangles, i.e. the remaining rectangles have a
total area of at most δ. To be more specific, in each snapshot we define blocks B1, . . . ,Bl by
combining all adjacent subsets Y ⊆ M reserved for low-narrow rectangles Llo-na that occur
in adjacent configurations (see figure 7). For example assume that a set of adjacent slots

Y ⊆ M occurs in adjacent configurations c j
i ,c j+1

i ,c j+2
i , that is Y ∈ SN j

i = SN j+1
i = SN j+2

i .

Then we combine these reserved regions into a block Bk with width x j
i + x j+1

i + x j+2
i and

height |Y |δ2. Then each block is a rectangular region and the height of each block is a
multiple of δ2.

Let B be a block with height dδ2 and width b. We select low-narrow rectangles to be
packed into this block by adding rectangles to a set S until the total area of S is at least dδ2b.
Since each small rectangle has area at most δ2s the total area of S is bounded by dδ2b+δ2s .
We pack the small rectangles into the block using the NFDH (Next Fit Decreasing Height)
algorithm introduced by Coffman et al. [5]. We pack in each block with width at least 4δs−3

a subset S′ ⊆ S with A(S′) ≥ A(S)−δA(S) (see figure 8), since

A(S′) ≥
n(S)∑
i=2

hi (b −δs)

25

(a) Sorted configura-
tions

rectangles ∈ L>1/2

rectangles ∈ Lta \ L′

rectangles ∈ Llo-na

container/rectangles ∈ L′

blocks

(b) Reserved space combined to blocks

Figure 7: Blocks

≥ (b −δs)
n(S)∑
i=1

hi︸ ︷︷ ︸
≥dδ2−δs

− h1︸︷︷︸
≤δs

≥ (b −δs)
(
(dδ2 −δs)−δs)

= (b −δs)
(
dδ2 −2δs)

= dδ2b −b2δs −dδ2δs +2δ2s

= dδ2b +δ2s︸ ︷︷ ︸
=A(S)

+δ2s −b2δs −dδs+2

= A(S)+δ2s − (b2δs +dδs+2) (27)

≥ A(S)− (2+ dδ2︸︷︷︸
≤1+2δ

)δs

≥ A(S)− (2+1+2δ︸ ︷︷ ︸
≤4

)δs

≥ A(S)−δ(δ2︸︷︷︸
≤dδ2

4δs−3︸ ︷︷ ︸
≤b

)

≥ A(S)−δA(S),

where hi denotes the height of i th level generated by NFDH and n(S) denotes the total
number of levels generated by NFDH.

To take care of the discarded small rectangle (while partitioning the low-narrow rectan-
gles, see section 4.3), we add this rectangle to one set S without changing the bound δA(S)
for the total area of the unpacked rectangles (see Equation (27)).

Thus, after packing all blocks, the total area of the unpacked low-narrow rectangles is
bounded by δA(Llo-na) ≤ δ.

26

h1

h2

...
hn(S)

b

dδ2

Figure 8: NFDH for packing blocks

Area lost by discarding small blocks. While packing the small boxes we discarded all
blocks with width smaller than 4δs−3. However, the area lost by discarding these blocks is
bounded by δ.

Lemma 10. The total area of all blocks with width < 4δs−3 is bounded by δ.

Proof. Let us first note that there are at most g∗(1
2δ2 +1)2|M ||M | blocks; this bound holds

because for a fixed subset of free slots, there are at most |M |
2 ≤ |M | blocks. Furthermore,

there are at most 2|M | different subsets of the free slots. (Remember that we combined
subsets of free slots if the sets SN j

i are equal for adjacent configurations.)
Due to the sorting of the configurations (see section 4.4.1), configurations with equal sets

SN j
i are adjacent for each snapshot and each height class. Thus, the above bound for the

number of blocks holds for each snapshot (≤ g∗) and for each height class (≤ 1
2δ2 +1). In

total the number of blocks is bounded by

g∗(
1

2δ2
+1)2|M ||M |.

If we assume that all blocks have width smaller than 4δs−3 (get discarded) and that each
block has height 1, we can bound the total area of the discarded blocks by (4δs−3)g∗(1

2δ2 +
1)2|M ||M | ≤ δ.

It holds that

K ≤ (1+2δ−3)(6|M |(2|M |)|M |)
1
δ−1

≤ 3δ−3(6|M |(2|M |)|M |)
1
δ−1

≤ 3δ−3

(
6

1+2δ

δ2

(
2

1+2δ

δ2

) 1+2δ
δ2

) 1
δ−1

≤ 3δ−3

(
6

2

δ2

(
2

2

δ2

) 2
δ2

) 1
δ−1

= 3δ−3

(
12

δ2

(
4

δ2

) 2
δ2

) 1
δ
(

12

δ2

(
4

δ2

) 2
δ2

)−1

≤ 3δ−32
4
δδ−

2
δ

(
22

δ2

) 2
δ3

2−3δ2
(

22

δ2

)− 2
δ2

27

= 3δ2−3− 2
δ 2

4
δ−3

(
2

δ

) 4
δ3 − 4

δ2

= 3δ−1− 2
δ− 4

δ3 + 4
δ2 2

4
δ−3+ 4

δ3 − 4
δ2

= 3δ−(

≤4, since 4δ≥δ3+2δ2︷ ︸︸ ︷
δ3+2δ2+4−4δ

δ3)2

≤4︷ ︸︸ ︷
4δ2−3δ3+4−4δ

δ3

≤ 3δ−
4
δ3 2

4
δ3

and thus

4(K +2δ−3) ≤ 4(3δ−
4
δ3 2

4
δ3 +2δ−3)

≤ 4(4δ−
4
δ3 2

4
δ3)

= δ− 4
δ3 2

4
δ3 +4.

Using these inequalities we conclude

4δs−3g∗(
1

2δ2
+1)2|M ||M | def M , g∗

≤ 4δs−3(4(K +2δ−3))(
1

2δ2
+1)2

1+2δ
δ2

1+2δ

δ2

δ≤ 1
4≤ 4δs−3(δ−

4
δ3 2

4
δ3 +4)(

1

δ2
)2

2
δ2

2

δ2

= 23δ
s−3− 4

δ3 −2−22
4
δ3 + 2

δ2 +4

= δs−(7+ 4
δ3)27+ 4

δ3 + 2
δ2

= δs−(

≤5︷︸︸︷
7δ3+4
δ3)2

≤5︷ ︸︸ ︷
7δ3+4+2δ

δ3

≤ δs− 5
δ3 2

5
δ3

def s= δ
8
δ3 − 5

δ3 2
5
δ3

= δ 3
δ3 2

5
δ3

= δ 1
δ3 δ

2
δ3 2

5
δ3

δ≤ 1
14≤2−3

≤ δ
1
δ3 2− 6

δ3 2
5
δ3

≤ δ
1
δ3︸︷︷︸

≤δ
2− 1

δ3︸︷︷︸
≤1

≤ δ. 2

4.4.6 Packing Containers

In the following, we describe how to pack the remaining low-narrow rectangles LC
lo-na and

the low-wide rectangles Llo-wi into the containers.

28

Assume that we have chosen the right set of containers C , that is, the set of containers
corresponds to the set induced by an optimal packing. If we have not chosen the right set,
packing the remaining low-narrow rectangles LC

lo-na and the low-wide rectangles Llo-wi into
the containers might not be possible. In this case, we restart with another set of containers.

Unfortunately, some low-wide rectangles might intersect two containers. To ensure that
all low-wide rectangles are packable into containers, we increase the height of each con-
tainer by δs . This is sufficient, since the height of all low rectangles is bounded by δs . In
the following lemma, we prove that the mKR algorithm (see section 3) can be used to pack
nearly all rectangles into the containers.

Lemma 11. Nearly all rectangles from Llo-wi and LC
lo-na can be packed into the containers,

i.e. the total area of unpacked rectangles is bounded by δ.

Proof. It is sufficient to prove that the assumptions (A1) – (A6) of Theorem 3 are fullfilled.
Let Lwi := Llo-wi,Lsm := LC

lo-na. Since we increased the height of all containers by δs , all
rectangles from Llo-wi are packable inside the containers; consequently, (A1) holds.
Furthermore, LC

lo-na was chosen such that

A(LC
lo-na)+A(Llo-wi) ≤ A(C) (see Equation (16)).

Thus, Assumption (A2) is fulfilled. Assumption (A3) is fullfilled since the width of each
rectangle in Llo-wi is at least δ.

To show (A4) – (A6), it is sufficient to show (A6), since hs
max,hw

max, w s
max ≤ γ = δs and the

right hand side of (A6) is the strictest. It holds that

hs
max ≤ δs = δ 8

δ3 = δ2 ·δ2δ3 δ
1
δ3︸︷︷︸

≤1

δ≤ 1
7≤ δ

7
· δ

3

7 ·7

≤ δ

7
min

{
δ3

4 ·2
,
δ

4 ·7
δ

}
|C |≤ 2

δ3 ,w w
min≥δ≤ δ

7
min

{
1

4|C | ,
δ

4 ·7
w w

min

}
. 2

Hence, the mKR algorithm allows us to pack almost all of the low-narrow rectangles from
LC

lo-na and Llo-wi, in particular the total area of the unpacked rectangles is bounded by δ. But
since we increased the height of the containers, some of the low rectangles might intersect
with other rectangles. However, we can move all intersecting rectangles to the top of the
strip at the cost of an increase in height by at most 2δs · (1+2δ)/δ2 ≤ δ.

4.5 Analysis of the Algorithm

In the following, we summarize the approximation algorithm for the non-malleable, con-
tiguous case, Ppoly|line j |Cmax (see Algorithm 1 for pseudo-code).

29

Algorithm 1: Algorithm for Ppoly|size j |Cmax

Input: Set of jobs L = {Ri | i ∈ {1, . . . ,n}}, and precision ε
Output: A schedule S with h(S) ≤ (1.5+ε)OPT

/* see section 4.1.1 */

Let v be the height of the solution generated by 2-approximation
foreach v∗ ∈ {(1+0ε) v

2 , (1+1ε) v
2 , . . . , (1+⌈1

ε

⌉
ε) v

2 } do
/* see section 4.1.2 */

Set ε′ such that ε′ = 1
2a for an integer a and such that ε′ ≤ ε

14
Find δ
Set γ← δs

Partition L into L>1/2,Lta,Llo,Lwi,Lna

/* see section 4.1.3 */

Round up hi to the next multiple of δ2 for all Ri ∈ Lta

Set M ← 1+2δ
δ2

Set K ← (1+2δ−3)(6|M |(2|M |)|M |)
1
δ−1

Let LK ⊆ Lta \ L>1/2 be the subset of K tall rectangles with largest area

/* see section 4.2 */

foreach choice of containers C do
if Llo-wi are nearly packable into C then

Set L′ ←C ∪LK

foreach slot assignment f do
foreach snapshot assignment α,β do

Calculate V by dynamic program /* see section 4.2.3 */

foreach v ∈V do
Solve LP /* see section 4.3 */

if LP has a solution then
/* see section 4.4 */

Adapt and Sort configurations /* 4.4.1 */

Pack pre-positioned rectangles /* 4.4.2 */

Pack low-narrow rectangles /* 4.4.5 */

Pack containers (if possible) /* 4.4.6 */

Save solution (if it exists)

Choose schedule with minimal length

30

We first guess (enumerate) the length of the optimal schedule. The next step in our al-
gorithm is to create a gap between tall and low rectangles and between wide and narrow
rectangles. In this process, we discard all middle-sized rectangles. The total area of these
rectangles is bounded by ε′ =: A1 (see section 4.1.2). In the following, we accept a slightly
increased height of the solution by rounding and shifting all tall rectangles. This additional
height is bounded by 2δ=: h1, as was shown in section 4.1.3.

Then we guess (enumerate) the set of containers and we guess/enumerate a slot assign-
ment and a snapshot assignment for L′, where L′ contains all containers and a subset of the
tall rectangles (or all tall rectangles if |Lta| ≤ K). With a dynamic program we construct a set
V of all distinguishable assignments of rectangles from L>1/2 to snapshots. After choosing
one assignment v ∈ V we set up a LP. If the LP has no solution, we try the next combi-
nation of containers, slot assignment, snapshot assignment and vector v ∈ V . Otherwise,
we start the actual packing of the rectangles beginning with the subset of tall rectangles
and containers L′ and the rectangles from L>1/2. All of these rectangles can be packed (see
sections 4.4.2, 4.4.3). The remaining tall rectangles are packed fractionally according to the
solution of the LP. By removing all split tall rectangles, we discard rectangles with total area
bounded by 2δ=: A2 (see section 4.4.4).

For packing low-narrow rectangles into the space reserved for them by the LP, we use an
approximation algorithm. The low-narrow rectangles that are not packed by this algorithm
and the discarded blocks have total area bounded by 2δ=: A3 (see section 4.4.5).

The next step is to pack the rectangles assigned to the containers (see section 4.4.6). Note
that this step is not always successful if we have chosen the wrong set of containers. In case
of failure, we try another set of containers. We increased the height of each container such
that all rectangles fit into the containers. Shifting all intersecting rectangles to the top of
the strip increases its height by at most δ=: h2, since there are at most (1+2δ)/δ2 slots and the
height of each intersected rectangle is bounded by δs . Furthermore, rectangles with total
area bounded by δ := A4 are not packed by mKR.

In total, we packed almost all rectangles into a strip of height 1+h1+h2 = 1+3δ. We add
the discarded rectangles using the NFDH algorithm by Coffman et al. [5]. This leads to an
additional strip with height bounded by

2 · (A1 + A2 + A3 + A4)+h3 ≤ 2ε′+9δ+ (1+2ε′)
2

,

where h3 ≤ (1+2ε′)/2 is the height of the tallest rectangle among all discarded rectangles.
Thus, all rectangles can be packed into a strip with height bounded by

(1+3δ)+ (2ε′+9δ+ (1+2ε′)/2) ≤ 1+ 1

2
+3ε′+12δ

≤ 1+ 1

2
+15ε′ ≤ 1+ 1

2
+ε.

As already mentioned in section 4.1.1 (see Equation (1)), rescaling yields Theorem 1.

The running time of the algorithm is in O(n f (1
ε)) for some (super-exponential) function

f .

31

5 Non-Contiguous Parallel Job Scheduling

In this section, we study the problem Ppoly|size j |Cmax. In this problem, the indices of the
machines allotted to a job are not required to be contiguous. In the following, we construct
a polynomial time approximation scheme (PTAS) for this case. First we show the existence
of a nearly optimal schedule with simpler structure. Therefore, we guess the height of an
optimal schedule and scale the instance such that the height of an optimal solution for
the scaled instance is bounded by 1 (see section 4.1.1). Instead of the 2-approximation
algorithm for the strippacking problem, we use a 2-approximation algorithm presented by
Garey & Graham [11] for resource-constrained scheduling. We partition the jobs into tall,
low-narrow, and low-wide jobs. Again, we reduce the search space by rounding and shifting
the tall jobs in the same manner as before (see section 4.1.3).

The actual algorithm for this case works as follows. We use a dynamic program to find a
distribution of the tall jobs among the slots. Then we schedule the tall jobs according to the
distribution in a canonical way. The remaining space is merged into one container per slot.
We schedule the low jobs by packing them into these containers using the mKR algorithm.
Then, creating a feasible schedule can be done by a simple greedy algorithm. In contrast
to the previous, case we do not guess the structure of the containers. The structure is given
automatically after assigning the tall jobs.

Again we use the notations job/rectangle and schedule/packing synonymously, although
rectangles might be misleading in this case, since horizontal fragmentation is allowed; the
height of a rectangle hi corresponds to the length (processing time) pi of a job (i.e. pi = hi)
and the width wi of a rectangle corresponds to the number of required machines qi of a
job divided by m (i.e. wi = qi/m).

5.1 Simple Structure

Again, the first step is to show the existence of a nearly optimal solution with simple struc-
ture.

5.1.1 Bounded Height

Since we want to divide the solution into a constant number of slots, we need to know
the height of an optimal solution, at least up to the required accuracy ε. By using the 2-
approximation algorithm by Garey & Graham [11], we can find a solution with height v ≤
2 ·OPT, where OPT is the height of an optimal solution. Again, there exists a value

v∗ ∈ {(1+0ε)v/2, (1+1ε)v/2, . . . , (1+d1/εeε)v/2}

such that OPT ≤ v∗ ≤ (1+ ε)OPT. Therefore, we only have to consider d1/εe + 1 different
candidates to find the right one. For simplicity, we divide the height of each job by v∗ such
that the height OPT′ := OPT

v∗ of an optimal solution for the scaled instance satisfies

1−ε< 1−ε
1−ε2

= 1

1+ε = OPT

(1+ε)OPT
≤ OPT

v∗ ≤ 1.

32

5.1.2 Creating a Gap

Again we create a gap in size between tall and low and between wide and narrow jobs by
discarding middle-sized jobs. These discarded jobs will be scheduled in a post-processing
step.

Let ε denote the requested accuracy and let ε′ ≤ ε/9 be the largest value of the form ε′ = 1/a

for some integer value a. Let σ0 := 1,σ1 := ε′, and σk := σ3
k−1/(4·72) for all k ≥ 2. Define

Lk := {Ri ∈ L | hi ∈ (σk ,σk−1] or wi ∈ (σk ,σk−1]} .

By Lemma 4 there exists k ∈ {2, . . . , 2/ε′ + 1} such that A(Lk) ≤ ε′A(L). Choose the smallest
value k ∈ {2, . . . , 2/ε′+1} with this property, and let δ :=σk−1, and γ :=σk = δ3/(4·72). Define

Lta := {Ri ∈ L | hi > δ} tall jobs

Llo-wi := {
Ri ∈ L | hi ≤ γ, wi > δ

}
low-wide jobs

Llo-na := {
Ri ∈ L | hi ≤ γ, wi ≤ γ

}
low-narrow jobs.

In the following, we present an algorithm to schedule Lta,Llo-wi, and Llo-na. The remaining
rectangles will be scheduled in a post-processing step using a greedy algorithm. This is
possible since

A(L \ (Lta ∪Llo-wi ∪Llo-na)) = A(Lk) ≤ ε′.

5.1.3 Shifting and Rounding

Analogous to the previous case, we can round up the height of the jobs to the next multiple
of δ2 and shift the positions of the tall jobs in an optimal schedule up to the next multiple
of δ2. Again this modifications increases the height of the schedule by at most 2δ.

Lemma 12. Let S be an optimal schedule, h(S) ≤ 1, for all jobs L. At the cost of an increase
in height of at most 2δ we can round up all tall jobs to the nearest multiple of δ2 and we can
shift the jobs such that the start time of all jobs is a multiple of δ2.

Proof. Analogous to Lemma 6 (section 4.1.3). 2

5.2 Dynamic Program for Tall Jobs

Draw horizontal lines spaced by a distance δ2 across the schedule starting with the x-axis
as first such line. Note that, due to the rounding and shifting the lower side of each tall job
corresponds to one of these horizontal lines. We say that job Ri is in slot i if its starting time
(in a given schedule) corresponds to the i th horizontal line. Let

IS :=
{

1, . . . ,
(1+2δ)

δ2

}
denote the set of slots and let

q := |IS| = (1+2δ)

δ2
≤ 2

δ2
. (28)

33

Since we cannot enumerate all possible assignments of tall jobs to slots in polynomial
time, we use a dynamic programming approach similar to the approach in section 4.2.3.
Again, due to the height bound of 1 and the rounding, we can partition the set of tall jobs
Lta into a constant number of height classes L(i) with

L(i) := {
R j ∈ Lta | h j = i ·δ2} for all i ∈ Ita :=

{
1

δ
+ i | i ∈N : 1 ≤ i ≤ 1−δ

δ2

}
.

Lemma 13. The set of all tall rectangles can be partitioned into a constant number of subsets:

Lta =
⋃̇

i∈Ita

L(i). (29)

In particular, the number of partitions of Lta is |Ita| = 1−δ
δ2 ≤ 1

δ2 .

Proof. Analogous to Lemma 7 (section 4.1.3). 2

Consider an optimal schedule for a scaled, shifted and rounded instance. We can define
a vector v i = (v i

1, . . . , v i
q) for each height i ∈ Ita such that each entry v i

j ·m denotes the total

width of all tall jobs with height i ·δ2 in slot j ∈ IS. Obviously,∑
i∈Ita

∑
j∈IS

v i
j

1

m
=∑
Ri∈Lta

wi ≤ 1 (30)

(otherwise the schedule is not feasible) and thus we have

v i
j ≤ m (31)

for each i ∈ Ita, j ∈ IS.
Furthermore, the value of every entry v i

j is integral, since the width of each job is a mul-
tiple of 1/m. Thus, a rough upper bound for the number of feasible vectors for each height
iδ2 (i ∈ Ita) is given by (m +1)q since there are q = |IS| components (one for each slot) and
for every component we have v i

j ∈ {0, . . . ,m}. This number is polynomial in n, since m is
polynomial in n and q is a constant (see Equation (28)).

With a dynamic programming approach we can compute a list of all feasible vectors
satisfying (30) and (31). The algorithm to calculate all feasible vectors for a given height
class i ∈ Ita works as follows. Assume that L(i) = {R1, . . . ,Rki }. Starting with a set V i :=
{(0, . . . ,0)} containing only the null vector, in step l ∈ {1, . . . ,ki } we replace each vector v ∈V i

with all vectors that can be generated by adding γl := wl · m to one of its components.
After each step remove all duplicate vectors. Note that for height class i only the slots
{1, . . . , (1+2δ)

δ2 − i +1} have to be considered, since jobs belonging to L(i) can be only in these
slots without exceeding the height bound of 1+2δ. Since the number of different vectors is
bounded by (m +1)q and q ≤ 2/δ2 (see Equation 28), we can show that the running time of
the algorithm is polynomially bounded in m with similar arguments as in section 4.2.3.

After repeating this computation for each height class L(i), again we can build the direct
product of all sets of vectors V :=�i∈Ita

V i and again there is an element v ∈ V that cor-
responds to the vectors of widths induced by an optimal solution for the scaled instance.

34

(a) First slot (b) Second slot (c) Third slot

. . .

(d) (e) All slots

Figure 9: Canonical packing for tall rectangles

Again we use the direct product notation only for convenience. Analogous to the first case,
we extend our dynamic program such that for each component of each vector a set of as-
sociated jobs is stored. Let L(v i

j) be this set of jobs associated with v i
j .

Define ϕ j (i) := max{1, j − i + 2}. Then, ϕ j (i) is the index of the lowest slot, such that a
rectangle of height iδ2 starting in slot ϕ j (i) intersectsslot j , since

(ϕ j (i)−1)δ2 + iδ2 ≥ ((j − i +2)−1)δ2 + iδ2 = (i +1)δ2.

We call an element v ∈ V feasible, if for each slot the total width of all tall jobs intersecting
this slot (including all tall jobs in this slot) is not greater than 1. That is,

∑
i∈Lta

k≤ j∑
k=ϕ j (i)

v i
k ≤ m for all j ∈ IS. (32)

Obviously, the vector induced by a scaled, rounded, and shifted optimal solution is feasible.

5.3 Canonical Packing for Tall Jobs

In the following, we present a canonical way to schedule all tall jobs (see figure 9).

Lemma 14. Let v = (v1, . . . , v |Ita|) ∈ V be a feasible vector. There exists a canonical schedule
for all tall jobs.

Proof. Let v = (v1, . . . , v |Ita|) ∈ V be a feasible vector. The algorithm starts with the first slot
(j = 1) and schedules/packs left aligned all tall jobs L(v i

1), i ∈ Ita into this slot (see figure 9a).
Obviously, this is possible, since the vector is feasible, i.e.

∑
i∈Lta

k≤1∑
k=ϕ j (i)

v i
k = ∑

i∈Ita

v i
1 ≤ m.

Now assume that we have scheduled all slots prior to slot j . Since v is feasible, the free
space in slot j is sufficient to (fractionally) pack all jobs assigned by v i

j , i ∈ Ita. Note that
all jobs scheduled in previous slots and intersecting the current slot are accounted for in
Equation (32). Furthermore, the free space in this slot is also free in all following slots (see
figure 9c). This allows us to (fractionally) pack all jobs L(v i

j) (i ∈ Ita) left aligned into slot
j . 2

35

5.4 Packing Low Jobs

Given a feasible vector v ∈ V , the total width for each slot that is not occupied by tall jobs
can be computed. Let

w f
j := 1−

(∑
i∈Lta

k≤ j∑
k=ϕ j (i)

v i
k

m

)
for each j ∈ IS

denote the total width of the free space for slot j and define for each slot j a container C j

of width w f
j and height δ2.

Consider an optimal schedule of all jobs (after scaling, rounding and shifting). In this
optimal schedule some low jobs might intersect the horizontal lines that form the borders
of the slots. Since the height of all low jobs is bounded by γ, increasing the height of the
containers to δ2+γ ensures that all low jobs are packable inside the containers. Analogous
to Lemma 11, almost all low jobs can be packed into the containers using the mKR algo-
rithm. The total area of the discarded jobs is bounded by δ. Note that the discarded jobs
will be packed in a post-processing step.

The next step is to schedule the containers. Since we increased the height of the con-
tainers in order to ensure that all low-wide rectangles can be packed, the first step is to
decrease the height again and remove all overlapping jobs. Since the height of each low job
is bounded by γ, the total area of all overlapping jobs is at most

2γ
1+2δ

δ2
≤ 2

δ3

4 ·72

1+2δ

δ2
≤ δ+2δ2

3
≤ δ+2δ

3
= δ.

Thus, the total area of discarded jobs is at most 2δ. Altough now the height of all contain-
ers corresponds to the height of the free space in each slot, in general it is still not possible
to schedule the container without fragmentation. Therefore, we split the containers into
slices of width 1/m. This is feasible since the jobs need not be schedule on contiguous ma-
chines. Due to the definition of the containers the width of each container corresponds ex-
actly to the free space of each slot. This allows us to add the slices successively, left-aligned
to the free space of each corresponding slot (see figure 10). Note that packing the low rect-
angles into the containers might not be possible, if we have chosen the wrong vector v or
scaling factor v∗.

5.5 Analysis

In the following, we summarize the algorithm for Ppoly|size j |Cmax (see Algorithm 2 for
pseudo-code).

While creating the gap, we discard jobs with total area bounded by ε′ := A1 (see sec-
tion 5.1.2). Due to the shifting and rounding of the tall jobs we increased the height of
the resulting schedule to 1+ 2δ =: h1 (see section 5.1.3). In order to ensure that all low-
wide jobs fit into the containers, we increased the height of all containers by γ. This led to
overlapping jobs with total area bounded by δ=: A2 (see section 5.4). Furthermore, we dis-
carded all jobs that were not packed by the modified Kenyon and Rémila algorithm, these

36

Figure 10: Split container to pack slots

Algorithm 2: Algorithm for Ppoly|size j |Cmax

Input: Set of jobs L = {Ri | i ∈ {1, . . . ,n}}, and precision ε
Output: A schedule S with h(S) ≤ (1+ε)OPT

/* see section 5.1.1 */

Let v be the height of the solution generated by 2-approximation
foreach v∗ ∈ {(1+0ε) v

2 , (1+1ε) v
2 , . . . , (1+⌈1

ε

⌉
ε) v

2 } do
/* see section 5.1.2 */

Set ε′ such that ε′ = 1
a for an integer a and such that ε′ ≤ ε

8
Find δ
Set γ← δ3

4·72

Partition L into Lta,Llo-wi,Llo-na

/* see section 5.1.3 */

Round up hi to the next multiple of δ2 for all Ri ∈ Lta

Calculate V by dynamic program /* see section 5.2 */

foreach v ∈V do
if v is feasible then

Pack Lta in a canonical way /* see section 5.3 */

Pack Llo-wi ∪Llo-na (if possible) /* see section 5.4 */

Save solution (if it exists)

Choose schedule with minimal length

37

discarded jobs have total area δ =: A3 (see section 5.4). Note that this step is not always
successful if we have chosen the wrong vector v or scaling factor v∗. In case of failure, we
try another combination. Overall the resulting schedule has height

h1 = 1+2δ

and we discarded jobs with total area bounded by

A1 + A2 + A3 = ε′+δ+δ.

In a post-processing step we pack all discarded jobs on top of the schedule. For this step
we use the NFDH algorithm. Due to the fact that all discarded jobs have height bounded
by δ, this results in an additional height of at most

2(ε′+2δ)+δ= 2ε′+5δ.

Thus, the height of the resulting schedule is bounded by

(1+2δ)+ (2ε′+5δ)
δ≤ε′≤ 1+9ε′

ε′≤ ε
9≤ 1+ε.

Since we scaled the instance in section 5.1.1, the last step is to multiply the length of the
schedule by v∗:

v∗(1+ε) ≤ (1+ε)OPT(1+ε) = (1+2ε+ε2)OPT

≤ (1+3ε)OPT.

This proves Theorem 2. The running time of the algorithm is in O(n f (1
ε)) for some expo-

nential function f .

6 Malleable Parallel Job Scheduling

In the following, we extend both algorithms for scheduling malleable jobs. We denote the
malleable versions of Ppoly|line j |Cmax and Ppoly|size j |Cmax by Ppoly|fnct_line j |Cmax and
Ppoly|fnct j |Cmax, respectively. Instead of a fixed pair consisting of the number of required
processors and the execution time, in this setting each job J j is associated with a function
p j : {1, . . . ,m} → Q+ that gives the execution time p j (`) of J j in terms of the number ` of
processors assigned to J j .

We present a dynamic program that generates a polynomial number of assignments of
jobs to the number of processors they use. If we have chosen an assignment, we use the
corresponding non-malleable algorithm to find a nearly optimal solution. Iterating over all
assignments generated by the dynamic program allows us to find a nearly optimal solution.
In the following, we assume that ε≤ 1/2, where ε is the required accuracy.

6.1 Simple Structure

Before we present the dynamic program, we show again that an optimal solution can be
transformed into a nearly optimal solution with simpler structure.

38

6.1.1 Bounded Height

Analogous to the non-malleable cases, we can find a schedule with length v ≤ 2 ·OPT by
using the 2-approximation algorithm by Ludwig & Tiwari [24] (for both cases contiguous
and non-contiguous), where OPT is the length of an optimal solution.

Let C := {(1+0ε)v/2, (1+1ε)v/2, . . . , (1+d1/εeε)v/2}. Then there exists a value v∗ ∈C such that
OPT ≤ v∗ ≤ (1+ε)OPT. Obviously, we only have to consider d1/εe+1 different candidates to
find this value.

Again, we scale the execution times of all jobs by v∗. But since we do not know the num-
ber of processors assigned to each job, the scaling of the execution time of each job is done
by components, that is, for each job J j and for each number of processors l we scale the
value of p j (`).

6.1.2 Partitioning

In order to simplify a given schedule, we are going to partition the set of jobs into tall jobs,
middle-sized jobs and small jobs as before. But since we have no knowledge about the
size of the jobs in the optimal solution, we cannot calculate δ,γ in advance. We have to
enumerate all possible values for δ,γ. This is feasible since there is only a constant number
of candidates (see sections 4.1.2 and 5.1.2).

• In the contiguous case we have 2/ε′ candidates σk with σ0 := 1,σ1 := ε′, and σk :=
(σk−1)

8/σ3
k−1 for all k ≥ 2; we enumerate all values k ∈ {2, . . . , 2/ε′+1} and set δ := σk−1

and γ :=σk = δ8/δ3
.

• In the non-contiguous case we have 2/ε′ candidatesσk withσ0 := 1,σ1 := ε′, andσk :=
σ3

k−1/(4·72) for all k ≥ 2; we enumerate all values k ∈ {2, . . . , 2/ε′+1} and set δ :=σk−1 and
γ :=σk = δ3/(4·72).

Even knowing δ and γ we cannot partition the set of rectangles at this point, since we do
not know how many processors will be assigned to each job. However, if we have fixed the
number of processors ` assigned to a job R j , we will call R j

tall if p j (`) > δ
low if p j (`) ≤ γ,

wide if `> δm, and
narrow if `≤ γm.

The following lemma shows that among these 2/ε′ candidates there is a least one allowing
the gap creation as before, i.e. the set of discarded jobs has small total area.

Lemma 15. Let S be an arbitrary schedule for L. Then there exists a pair δ,γ among all
candidates such that the area

A(Lk) ≤ ε′ A(L)

with Lk := {
Ri ∈ L | γ< ri < δ or γ< pi (ri) < δ}

.

Proof. Analogous to the proof of Lemma 4. 2

39

6.1.3 Rounding and Shifting

Let S be an optimal schedule for a given instance. In particular in this schedule for each
job, the number of assigned processors is fixed and thus, the processing time is known.

Lemma 16. There exists a schedule S with nearly optimal length and simpler structure. That
is:

(a) h(S) ≤ (1+3δ)OPT, where h(S) denotes the length of schedule S.

(b) For each tall job Ri ∈ Lta the start time is a multiple of δ2 and the processing time / height
of each tall job can be rounded up to the next multiple of δ2.

(c) For all other rectangles, Ri ∈ L \ Lta, the processing time can be rounded up to the next
multiple of γ/n.

Proof. Let S∗ be an optimal schedule. We can modify this schedule basically in the same
way as in the non-malleable cases, since in schedule S∗ the number of processors assigned
to each job is fixed and thus the processing time is also fixed.

Rounding up the processing time of all non-tall jobs Ri (i.e. jobs with processing time
≤ δ) to the next multiple of γ/n increases the height by at most

n · γ
n
= γ.

Analogous to the proof of Lemma 6, we can shift the starting time and round the processing
time of each tall job after scaling the schedule by (1+2δ). Since γ≤ ε≤ 1/2, this leads to an
increased height of at most

(1+2δ)(1+γ) = 1+γ+2δ+2δγ≤ 1+3δ.

2

Thus, we can round up the running time of all jobs at the cost of at most 3δ. Again,
since we do not know the number of processors assigned to each job, the rounding of the
execution time of each job is done by components, that is, for each job Ri and for each
number of processors ` we round up the value of pi (`); the value is rounded up to the next
multiple of δ2 if pi (`) > δ and to the next multiple of γ/n otherwise. In the following, we
denote the scaled and rounded execution times by p̃ j (`). Note that p̃ j (`) ≤ δ iff p j (`) ≤ δ,
since δ is a multiple of γ and thus δ is a multiple of γ/n. Furthermore, p̃ j (`) ≤ γ iff p j (`) ≤ γ,
since γ is a multiple of γ/n.

6.1.4 Container

In the following, we show that there exists a constant number of widths such that the width
of all low-wide rectangles can be rounded up to one of these widths.

Lemma 17. Let S be a nearly optimal schedule (scaled, rounded, shifted). There exists a
packing Ŝ and a vector of width (b1, . . . ,bm̂) such that

40

(a) h(Ŝ) ≤ h(S)+δ
(b) the total area of discarded rectangles is bounded by 2δ, and

(c) the width of each low-wide rectangle can be rounded up to a width bi for some i ∈
{1, . . . ,m̂}.

Proof. Consider a nearly optimal schedule (scaled, rounded, shifted) S. We define slots as
in section 4.1.4 or 5.4. Draw horizontal lines spaced by a distance δ2 across the schedule.
Due to the rounding and shifting, the lower and upper sides of the tall jobs lie along two
of these lines. These lines split the schedule into at most (1+3δ)/δ2 horizontal rectangular
regions that we call slots. The definition of containers depends on the scheduling problem
we are considering.

In the contiguous case, we define a container as a rectangular region inside a slot whose
left boundary is either the right side of a tall rectangle or the left side of the strip, and whose
right boundary is either the left side of a tall rectangle or the right side of the schedule. We
consider only containers that contain at least one low-wide rectangle (see section 4.1.4).

In the non-contiguous case, we define a container a little bit differently. Let w f
j denote

the total width for each slot j that is not occupied by tall rectangles. We define for each slot

j a container C j of width w f
j and height δ2 (see section 5.4).

As we have shown in section 4.4.6 (contiguous case) and in section 5.4 (non-contigu-
ous case) we can pack almost all low-wide rectangles using the mKR algorithm. The mKR
algorithm stacks all low-wide rectangles on top of each other and divides the stack into m̂
groups (see section 3.1, figure 1). The width of each wide rectangle is rounded to the width
of the widest rectangle of the corresponding group. During repacking, rectangles with total
area at most δ are discarded. Furthermore, we have to discard overlapping rectangles with
total area bounded by δ (see sections 4.4.6 and 5.4).

Thus,

• the total area of all discarded rectangles is bounded by 2δ, and

• there is only a constant number of different widths among the low-wide rectangles.
2

6.1.5 Induced Vector

Assume that we have a scaled, rounded, and shifted solution according to sections 6.1.1,
6.1.2, 6.1.3, 6.1.4. Let g := 1/δ2, q := (1+3δ)/δ2 and let m̂ denote the number of groups con-
structed in the mKR algorithm (see section 3.1). For this schedule with simpler structure
we can define a vector

v = (v t
1, . . . , v t

g , v w
1 , . . . , v w

m̂ , v s , vd)

with the following semantics:

• v t
i = (v t

i ,1, . . . , v t
i ,q) is a vector and v t

i , j · 1
m denotes the total width of all tall jobs with

height iδ2 in slot j for each i ∈ {1, . . . , g }, j ∈ {1, . . . , q}; e.g. v t
1
δ+1,2

= 5 means that the

41

sum of the widths of all jobs with height (1
δ +1) ·δ2 = δ+δ2 in slot 2 is 5

m . Note that
v t

i , j = 0 for all i ≤ 1
δ , since all tall jobs have height > δ= 1

δ ·δ2. Furthermore, v t
i , j = 0 for

all j > (1+3δ)
δ2 − i +1, since jobs of height iδ2 would exceed the height (1+3δ) if placed

in such slots j .

• v w
j · γn denotes the total height of all wide jobs belonging to group j as constructed by

the mKR algorithm for each j ∈ {1, . . . ,m̂}; e.g. v w
2 = 5 means that the total height of

all wide jobs Ri with width b2 ≤ wi < b3 (or b2 = wi if b2 = b3) is 5 · γn .

• v s · γ
nm denotes total area of all small jobs; e.g. v s = 5 means that the total area of all

small jobs is 5 · γ
nm .

• vd · γ
nm denotes total area of all discarded jobs; e.g. vd = 5 means that the total area of

all discarded jobs is 5 · γ
nm .

Due to the rounding and normalization, all components must have discrete values and the
value of each component is bounded. We have:

• v t
i , j ∈ {0, . . . , (1+3δ)

δ
m} for each i ∈ {1, . . . , g }, j ∈ {1, . . . , q}; the value is integral, since the

width of each job is a multiple of 1
m ; the value is bounded by (1+3δ)

δ
m, since otherwise

the total area of all jobs with height iδ2 is

iδ2︸︷︷︸
>δ

· v t
i , j︸︷︷︸

> (1+3δ)
δ m

· 1

m
> δ (1+3δ)

δ
m

1

m
= 1+3δ.

• v w
i ∈ {0, . . . , (1+3δ)

δ
n
γ } for each i ∈ {1, . . . ,m̂}; the value is integral, since the height of all

non-tall jobs is a multiple of γ
n ; the value is bounded by (1+3δ)

δ
n
γ

, since otherwise the
total area of all jobs in group i is at least

bi+1︸︷︷︸
>δ

(1+3δ)

δ

n

γ

γ

n
> 1+3δ.

• v s ∈ {0, . . . , (1+ 3δ) (mn)
γ

}; the value is integral, since the height of all non-tall jobs is

a multiple of γ
n and the width of all jobs is a multiple of 1

m ; the value is bounded by

(1+3δ) (mn)
γ

, since otherwise the total area of all small jobs exceeds

(1+3δ)
(mn)

γ
· γ

nm
= 1+3δ.

• vd ∈ {0, . . . ,3ε′ nm
γ

}; the value is integral, since the height of all discarded (non-tall)

jobs is a multiple of γn and the width of all jobs is a multiple of 1
m ; the value is bounded

by 3ε′ nm
γ

, since otherwise the total area of all discarded jobs exceeds

3ε′
nm

γ
· γ

nm
= 3ε′.

However, the total area of all discarded jobs is at most 3ε′.

42

Thus in total, the number of different vectors is bounded by(
(1+3δ)

δ
m +1

)g q (
(1+3δ)

δ

n

γ
+1

)m̂ (
(1+3δ)

nm

γ
+1

)(
3ε′ ·nm

γ
+1

)
∈O(mg q+2nm̂+2) (33)

and

g q = 1

δ2

(1+3δ)

δ2
= 1+3δ

δ4
,

m̂ ∈O(
1

δ2
).

6.2 Dynamic Program

In the following, we assume that we have chosen a vector b := (b1, . . . ,bm̂) such that bi

denotes the width of group i (as introduced by the mKR algorithm). Let bm̂+1 := δ.
The dynamic program works as follows. We start with a set V 0 := {(0, . . . ,0)} contain-

ing only the null vector. Then we iterate over the set of jobs L = {J1, . . . , Jn} and generate
in each step i a new set V i of vectors by replacing each vector from V i−1 with all vectors
that can be generated by adding Ji to each component, if feasible. To be more specific let
v = (v t

1, . . . , v t
g , v w

1 , . . . , v w
m̂ , v s , vd) ∈ V i−1. To generate new vectors we try to add Ji to each

component in turn. This adding is done as follows.

v t
k For each j ∈ {1, . . . , q} and for each k ∈ {1, . . . , g } with kδ2 > δ let ` be the minimal

number of processors such that p̃i (`) = kδ2.

If ` exists, define v̂ t
k := (v t

k,1, . . . , v t
k, j−1, v t

k, j +`, v t
k, j+1, v t

k,q) and v ′ := (v t
1, . . . , v t

k−1, v̂ t
k ,

v t
k+1, . . . , v t

g , v w
1 , . . . , v w

m̂ , v s , vd) and add v ′ to V i . If ` is not existing, we continue with
the next component.

v w
k For each k ∈ {1, . . . ,m̂} with bk 6= bk+1 we choose ` ∈ (m ·bk+1,m ·bk] such that p̃i (`) is

minimal; if bk = bk+1 we choose ` := bk m.

If p̃i (`) ≤ γ (i.e. Ji is a low job, furthermore Ji is a wide job, since bk ≥ bm̂+1 = δ),

define v ′ := (v t
1, . . . , v t

g , v w
1 , . . . , v w

k−1, v w
k + p̃i (`)n

γ , v w
k+1, . . . , v w

m̂ , v s , vd) and add v ′ to V i . If
p̃i (`) > γ, we continue with the next component.

v s Choose ` ∈ {1, . . . ,γm} such that p̃i (`) ≤ γ and such the area of Ji , A`(Ji) = /̀m · p̃i (`),
is minimal.

If such ` exists, define v ′ := (v t
1, . . . , v t

g , v w
1 , . . . , v w

m̂ , v s+A`(Ji)· nm
γ

, vd) and add v ′ to V i .

vd Choose ` ∈ {(γm)+1, . . . ,δm} such that γ< p̃i (`) ≤ δ and such the area of Ji , A`(Ji) =
/̀m · p̃i (`), is minimal.

If such ` exists, define v ′ := (v t
1, . . . , v t

g , v w
1 , . . . , v w

m̂ , v s , vd +A`(Ji)· nm
γ) and add v ′ to V i .

43

If during an adding step a vector is generated that contains a component with value exceed-
ing the above mentioned bounds, this vector is discarded. Since V i is a set, no duplicate
vectors (vectors that have the same components) occur. Consequently, the number of all
vectors in V i is polynomially bounded,

|V i | ∈O(mg q+2nm̂+2), see Equation (33).

Again, we extend the dynamic program such that for each component of each vector a set of
associated jobs with fixed number of processors is stored. This increases the space needed
to store the vectors, but it is still polynomial in n. Due to this extension, we can create a list
of non-malleable jobs based on a vector v ∈V . We denote this distinct list by L(v).

In contrast to the previous dynamic programs, V might not contain a vector correspond-
ing to the vector induced by a nearly optimal solution. However, we show in the following
lemma that there is a vector v ∈V that is nearly optimal.

Lemma 18. Let S be an optimal schedule for the scaled instance (i.e. h(S) ≤ 1). Then there
exists v ∈V such that

OPT(L(v)) ≤ (1+ ε̃),

where OPT(L(v)) denotes an optimal solution for L(v) and ε̃ is some constant depending on
ε′.

Proof. Let S be an optimal schedule and let S′ be the nearly optimal schedule with simpler
structure (i.e. rounded and repacked) and let Ld be the set of discarded jobs. Then h(S′) ≤
(1+ 3δ)h(S) and A(Ld) ≤ 2δ+ ε′ (see sections 6.1.3, 6.1.4). Note that in S′ the number of
processors for each job is fixed and for each tall job the slot it is scheduled in is given.

Create v ′ as follows. We add each job basically in the same way as in the dynamic pro-
gram. In distinction to the dynamic program, the component a job is added to is deter-
mined by S′. The resulting vector v ′ might differ from the induced vector, since in each
adding step the number of assigned processors might be different to the number assigned
by S′. The following discrepancies might occur. For each case we argue why the upper
bound for an optimal solution for L(v ′) still holds.

tall jobs The number of assigned processors might be smaller in v ′ than in S′. Obviously,
this does not affect the bound.

low-wide jobs The number of processors assigned is chosen in the same interval, but the
height is minimized. If we repack the container with the mKR algorithm, we round
up the widths of these jobs to the upper bound of the interval. Consequently, only
the height of the job is affecting the solution, but the height is equal or even lower.

small/discarded jobs The number of processors might be different, but the area of the
job is minimized. Since only area arguments are used for small or discarded jobs, the
bound is not affected.

The dynamic program includes the same adding steps as we used for generating v ′. Thus,
V contains a vector v that is equivalent to v ′, that is, the values of all components are equal.

44

For the problem Ppoly|fnct j |Cmax this is sufficient, since it is possible to schedule the
tall jobs fractionally and the other jobs are scheduled using only area arguments (small or
discarded jobs) or height arguments (low-wide jobs). Thus, in this case

S(v) ≤ (1+3δ)h(S)

and
Ld (v) ≤ 2δ+ε′,

where S(v) is the schedule with simpler structure for L(v) and Ld (v) is the set of discarded
jobs. We add the discarded jobs using the NFDH algorithm. This leads to an additional
strip of height bounded by

2(2δ+ε′)+δ,

since the height of all discarded jobs is bounded by δ. Thus in total, we have

OPT(L(v)) ≤ (1+3δ)h(S)+5δ+2ε′

≤ 1+2ε′+8δ

≤ 1+ ε̃

for ε̃ := 2ε′+8δ.
Unfortunately, for Ppoly|fnct_line j |Cmax this is not sufficient. Since in v might be jobs

which are wider than the jobs in an optimal solution, there might not be a feasible solution
for v although it is equivalent to a nearly optimal solution.

Therefore, we guess a subset L(K) with K jobs (where K is the same constant as in sec-
tion 4.4.4). For each of these K jobs, we try all numbers of processors such that this job
is tall. In the following, we consider only vectors v ∈ V where all other tall jobs have area
smaller than the jobs in L(K). This ensures that the jobs L(K) are chosen in the correspond-
ing non-malleable algorithm for pre-positioning (see section 4.2). Since we try all possi-
bilities, we find the set corresponding to the nearly optimal solution eventually. For the
remaining jobs we have the same arguments as for the Ppoly|fnct j |Cmax case. The (re-
maining) tall jobs are packed fractionally. The upper bound for the low-wide jobs depends
only on the height of the jobs and the bound for the small and the discarded jobs depends
only on area arguments. If we annotate the jobs from L(K) in v with the guessed number of
processors, we have the same result as for the previous case, i.e.

OPT(L(v)) ≤ 1+ ε̃. 2

6.3 The Algorithm

Using Lemma 18 we get the following theorem.

Theorem 19.

(a) For every ε > 0 there exists an algorithm A for every instance I of Ppoly|fnct_line j |Cmax

such that
A(I) ≤ (1.5+ε)OPT(I)

45

holds and the running time is polynomial in n, where A(I) is the length of the schedule
for instance I generated by algorithm A and OPT(I) is the length of an optimal schedule
for instance I .

(b) For every ε> 0 there exists an algorithm A for every instance I of Ppoly|fnct j |Cmax such
that

A(I) ≤ (1+ε)OPT(I)

holds and the running time is polynomial in n, where A(I) is the length of the schedule
for instance I generated by algorithm A and OPT(I) is the length of an optimal schedule
for instance I .

Proof. Since we use the algorithms for Ppoly|size j |Cmax (Algorithm 2) and Ppoly|line j |Cmax

(Algorithm 1), respectively, it remains to show that there exists an algorithm to find a proper
assignment of a number of required processors to each job.

Lemma 18 shows that among all vectors generated by the dynamic program is at least
one which allows a nearly optimal solution. Thus, after enumerating all possibilities (for
pseudo-code see Algorithm 3), the algorithm for Ppoly|line j |Cmax or Ppoly|size j |Cmax finds
a nearly optimal solution. 2

7 Conclusion

In this paper, we have shown that the problem of scheduling parallel jobs can be solved
within (1+ ε′) of the optimum, if we restrict the instances such that the number of ma-
chines is polynomially bounded in the number of jobs, Ppoly|size j |Cmax. Furthermore,
we presented an extension to the problem of scheduling malleable jobs, Ppoly|fnct j |Cmax.
These are in a sense the best results possible, since the problems are NP-hard in the strong
sense. However, the running times of the presented algorithms are far from practical, so
the obvious question is if the running times can be improved or whether there exists an
efficient PTAS (EPTAS), i.e. an algorithm with running time O(f (ε−1)nc) for a constant c.

For Ppoly|line j |Cmax and Ppoly|fnct_line j |Cmax we presented (1.5+ε) approximation al-
gorithms. The existence of a PTAS is still open for these problems. Thus, it is an interesting
question if a lower bound for the approximation ratio can be shown or if algorithms with
better approximation ratio exist. Of course, an improvement of the running time would
also be interesting.

We assume that the described approach can also be applied to other scheduling prob-
lems like resource constrained scheduling.

Acknowledgements. The authors thank Roberto Solis-Oba for his support, time, and
hospitality at the University of Western Ontario and for many helpful discussions.

46

Algorithm 3: Algorithm for the malleable case

Input: Set of jobs L = {Ri | i ∈ {1, . . . ,n}}, and precision ε
Output: A schedule S with

h(S) ≤
{

(1.5+ε)OPT contiguous case, Ppoly|fnct_line j |Cmax

(1+ε)OPT non-contiguous case, Ppoly|fnct j |Cmax

/* see section 6.1.1 */

Let v be the height of the solution generated by 2-approximation
foreach v∗ ∈ {(1+0ε) v

2 , (1+1ε) v
2 , . . . , (1+⌈1

ε

⌉
ε) v

2 } do
/* see section 6.1.2 */

foreach k ∈ {2, . . . , 2
ε′ } do

Set δ←σk−1

Set γ←σk

/* see section 6.1.3 */

Define p̃i (`) for each Ri ∈ L

foreach Vector of widths (b1, . . . ,bm̂) do
Calculate V by dynamic program /* see section 6.2 */

foreach L(K) /* Problem Ppoly|fnct_line j |Cmax only */

do
foreach v ∈V do

Use Algorithm 1 or 2 to find a solution
Save solution

Choose schedule with minimal length

47

References

[1] Abdel Krim Amoura, Evripidis Bampis, Claire Kenyon, and Yannis Manoussakis.
Scheduling independent multiprocessor tasks. Algorithmica, 32(2):247–261, 2007.

[2] Krishna P. Belkhale and Prithviraj Banerjee. A scheduling algorithm for parallelizable
dependent tasks. In Proceedings of the 5th International Parallel Processing Sympo-
sium (IPPS 1991), pages 500–506, 1991.

[3] Stefan Bischof and Ernst W. Mayr. On-line scheduling of parallel jobs with runtime
restrictions. Theoretical Computer Science, 268(1):67–90, 2001.

[4] Jacek Błażewicz, Klaus H. Ecker, Erwin Pesch, Günter Schmidt, and Jan Węglarz.
Handbook on Scheduling: From Theory to Applications (International Handbooks on
Information Systems). Springer, 2007.

[5] Edward G. Coffman, Jr., Michael R. Garey, David S. Johnson, and Robert E. Tarjan.
Performance bounds for level-oriented two-dimensional packing algorithms. SIAM
Journal on Computing, 9(4):808–826, 1980.

[6] Thomas Decker, Thomas Lücking, and Burkhard Monien. A 5/4-approximation al-
gorithm for scheduling identical malleable tasks. Theoretical Computer Science,
361(2):226–240, 2006.

[7] Maciej Drozdowski. Scheduling multiprocessor tasks – an overview. European Journal
of Operational Research, 94(2):215–230, 1996.

[8] Jianzhong Du and Joseph Y.-T. Leung. Complexity of scheduling parallel task systems.
SIAM Journal on Discrete Mathematics, 2(4):473–487, 1989.

[9] Anja Feldmann, Ming-Yang Kao, Jiří Sgall, and Shang-Hua Teng. Optimal on-line
scheduling of parallel jobs with dependencies. Journal of Combinatorial Optimiza-
tion, 1(4):393–411, 1998.

[10] Anja Feldmann, Jiří Sgall, and Shang-Hua Teng. Dynamic scheduling on parallel ma-
chines. Theoretical Computer Science (Special Issue on Dynamic and On-line Algo-
rithms), 130(1):49–72, 1994.

[11] Michael R. Garey and Ronald L. Graham. Complexity results for multiprocessor
scheduling under resource constraints. SIAM Journal on Computing, 4(4):397–411,
1975.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[13] Klaus Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial
time approximation scheme. Algorithmica, 39(1):59–81, 2004.

48

[14] Klaus Jansen and Lorant Porkolab. Improved approximation schemes for schedul-
ing unrelated parallel machines. Mathematics of Operations Research, 26(2):324–338,
2001.

[15] Klaus Jansen and Lorant Porkolab. Linear-time approximation schemes for schedul-
ing malleable parallel tasks. Algorithmica, 32(3):507–520, 2002.

[16] Klaus Jansen and Lorant Porkolab. Computing optimal preemptive schedules for par-
allel tasks: linear programming approaches. Mathematical Programming, 95(3):617–
630, 2003.

[17] Klaus Jansen and Roberto Solis-Oba. New approximability results for 2-dimensional
packing problems. In Symposium on Mathematical Foundations of Computer Science
(MFCS 2007), volume 4708 of Lecture Note in Computer Science, pages 103–114, 2007.

[18] Klaus Jansen and Hu Zhang. Scheduling malleable tasks with precedence constraints.
In Proceedings of the seventeenth annual ACM symposium on Parallelism in Algorithms
and Architectures (SPAA 2005), pages 86–95, 2005.

[19] Klaus Jansen and Hu Zhang. An approximation algorithm for scheduling malleable
tasks under general precedence constraints. ACM Transactions on Algorithms (TALG),
2(3):416–434, 2006.

[20] Berit Johannes. Scheduling parallel jobs to minimize the makespan. Journal of
Scheduling, 9(5):433–452, 2006.

[21] Claire Kenyon and Eric Rémila. A near optimal solution to a two-dimensional cutting
stock problem. Mathematics of Operations Research, 25:645–656, 2000.

[22] Renaud Lepère, Denis Trystram, and Gerhard J. Woeginger. Approximation algorithms
for scheduling malleable tasks under precedence constraints. International Journal of
Foundations of Computer Science (IJFCS), 13(4):613–627, 2002.

[23] Joseph Y-T. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. Chapman and Hall/CRC, 2004.

[24] Walter Ludwig and Prasoon Tiwari. Scheduling malleable and nonmalleable parallel
tasks. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 1994), pages 167–176. ACM Press, 1994.

[25] Grégory Mounié, Christophe Rapine, and Denis Trystram. A 3
2 -approximation algo-

rithm for scheduling independent monotonic malleable tasks. SIAM Journal on Com-
puting, 37(2):401–412, 2007.

[26] Edwin Naroska and Uwe Schwiegelshohn. On an on-line scheduling problem for par-
allel jobs. Information Processing Letters, 81(6):297–304, 2002.

49

[27] Ingo Schiermeyer. Reverse-fit: A 2-optimal algorithm for packing rectangles. In Pro-
ceedings of the Second Annual European Symposium on Algorithms (ESA 1994), volume
855 of Lecture Note in Computer Science, pages 290–299. Springer-Verlag, 1994.

[28] Jiří Sgall. On-line scheduling. In Amos Fiat and Gerhard J. Woeginger, editors, Online
Algorithms — The State of the Art, volume 1442 of Lecture Notes in Computer Science,
pages 196–231. Springer-Verlag, 1998.

[29] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing, 26(2):401–409, 1997.

[30] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate algorithms for scheduling par-
allelizable tasks. In Proceedings of the 4th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA 1992), pages 323–332, 1992.

[31] Deshi Ye and Guochuan Zhang. On-line scheduling mesh jobs with dependencies.
Theoretical Computer Science, 372(1):94–102, 2007.

50

	Introduction
	Known Results
	New Results
	Structure

	Outline of the Algorithms
	Packing into a Constant Number of Bins
	Grouping and Rounding
	Fractional Binpacking
	Packing the Rectangles

	Contiguous Parallel Job Scheduling
	Near-Optimal Schedule with Simple Structure
	Bounded Height
	Partitioning the Set of Rectangles/Creating a Gap
	Rounding and Shifting Tall Rectangles
	Containers for Low Rectangles
	Properties / Summary

	Pre-Positioning
	Slot Assignment
	Snapshots
	Dynamic Program for L>12-rectangles

	Linear Program
	Packing the Rectangles
	Adapting and Sorting the Configurations
	Packing Pre-Positioned Rectangles
	Tall Rectangles
	Choosing Constant K
	Packing the Low-Narrow Rectangles
	Packing Containers

	Analysis of the Algorithm

	Non-Contiguous Parallel Job Scheduling
	Simple Structure
	Bounded Height
	Creating a Gap
	Shifting and Rounding

	Dynamic Program for Tall Jobs
	Canonical Packing for Tall Jobs
	Packing Low Jobs
	Analysis

	Malleable Parallel Job Scheduling
	Simple Structure
	Bounded Height
	Partitioning
	Rounding and Shifting
	Container
	Induced Vector

	Dynamic Program
	The Algorithm

	Conclusion

