Skip to main content

Approximation Algorithms for Scheduling Parallel Jobs: Breaking the Approximation Ratio of 2

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

Abstract

In this paper we study variants of the non-preemptive parallel job scheduling problem where the number of machines is polynomially bounded in the number of jobs. For this problem we show that a schedule with length at most (1 + ε)OPT can be calculated in polynomial time, which is the best possible result (in the sense of approximation ratio), since the problem is strongly NP-hard.

For the case when all jobs must be allotted to a subset of machines with consecutive indices a schedule with length at most (1.5 + ε)OPT can be calculated in polynomial time. The previously best known results are algorithms with absolute approximation ratio 2.

Research supported by a PPP funding “Approximation algorithms for d-dimensional packing problems” 315/ab D/05/50457 granted by the DAAD, and by EU research project AEOLUS, Algorithmic Principles for Building Efficient Overlay Computers, EU contract number 015964.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: Scheduling independent multiprocessor tasks. Algorithmica 32(2), 247–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Scheduling: From Theory to Applications. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  3. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing 9(4), 808–826 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Decker, T., Lücking, T., Monien, B.: A 5/4-approximation algorithm for scheduling identical malleable tasks. Theor. Comput. Sci. 361(2), 226–240 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drozdowski, M.: Scheduling multiprocessor tasks – an overview. European Journal of Operational Research 94(2), 215–230 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, J., Leung, J.Y.-T.: Complexity of scheduling parallel task systems. SIAM J. Disc. Math. 2(4), 473–487 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Graham, R.L.: Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  9. Jansen, K., Porkolab, L.: Linear-time approximation schemes for scheduling malleable parallel tasks. Algorithmica 32(3), 507–520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jansen, K., Solis-Oba, R.: New Approximability Results for 2-Dimensional Packing Problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 103–114. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Johannes, B.: Scheduling parallel jobs to minimize the makespan. Journal of Scheduling 9(5), 433–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock problem. Mathematics of Operations Research 25, 645–656 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leung, J.Y.-T. (ed.): Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Chapman and Hall/CRC (2004)

    Google Scholar 

  14. Ludwig, W., Tiwari, P.: Scheduling malleable and nonmalleable parallel tasks. In: Proc. 5th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 167–176 (1994)

    Google Scholar 

  15. Mounie, G., Rapine, C., Trystram, D.: A \(\frac32\)-approximation algorithm for scheduling independent monotonic malleable tasks. SIAM Journal on Computing 37(2), 401–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal of Computing 26(2), 401–409 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms for scheduling parallelizable tasks. In: Proc. 4th ACM Symp. on Parallel Alg. and Architectures (SPAA), pp. 323–332 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, K., Thöle, R. (2008). Approximation Algorithms for Scheduling Parallel Jobs: Breaking the Approximation Ratio of 2 . In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics