Skip to main content

Superpolynomial Speedups Based on Almost Any Quantum Circuit

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Abstract

The first separation between quantum polynomial time and classical bounded-error polynomial time was due to Bernstein and Vazirani in 1993. They first showed a O(1) vs. Ω(n) quantum-classical oracle separation based on the quantum Hadamard transform, and then showed how to amplify this into a n O(1) time quantum algorithm and a n Ω(logn) classical query lower bound.

We generalize both aspects of this speedup. We show that a wide class of unitary circuits (which we call dispersing circuits) can be used in place of Hadamards to obtain a O(1) vs. Ω(n) separation. The class of dispersing circuits includes all quantum Fourier transforms (including over nonabelian groups) as well as nearly all sufficiently long random circuits. Second, we give a general method for amplifying quantum-classical separations that allows us to achieve a n O(1) vs. n Ω(logn) separation from any dispersing circuit.

An Erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-540-70575-8_73

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S.: Quantum lower bound for recursive Fourier sampling. Quantum Information and Computation 3(2), 165–174 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the jones polynomial. In: STOC 2006: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 427–436. ACM Press, New York (2006)

    Chapter  Google Scholar 

  3. Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: FOCS 2005: 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 469–478 (2005)

    Google Scholar 

  4. Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: STOC 1997: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, El Paso, Texas, May 4–6, 1997, pp. 48–53. ACM Press, New York (1997)

    Chapter  Google Scholar 

  5. Berger, B.: The fourth moment method. Siam J. Comp. 26(4), 1188–1207 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernstein, E., Vazirani, U.: Quantum complexity theory. Siam J. Comp. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlsten, O.C.O., Oliveira, R., Plenio, M.B.: Emergence of typical entanglement in two-party random processes. J. Phys. A 40, 8081–8108 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: STOC 2003: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, San Diego, CA, pp. 1–9. ACM Press, New York (2003)

    Google Scholar 

  9. Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quantum mechanical states. IEEE Trans. Inf. Th. 45(4), 1216–1227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. Journal of the ACM 54(1), 1–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hallgren, S., Harrow, A.W.: Superpolynomial speedups based on almost any quantum circuit (2008)

    Google Scholar 

  12. Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations of quantum coset states for graph isomorphism. In: STOC 2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 604–617. ACM Press, New York (2006)

    Google Scholar 

  13. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, Heraklion, Crete Island, Greece, pp. 263–270 (2001)

    Google Scholar 

  14. Popescu, S., Short, A.J., Winter, A.: The foundations of statistical mechanics from entanglement: Individual states vs. averages. Nature 2, 754–758 (2006)

    Google Scholar 

  15. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. Siam J. Comp. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simon, D.R.: On the power of quantum computation. Siam J. Comp. 26(5), 1474–1483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift problems. In: SODA 2003: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD (2003)

    Google Scholar 

  18. Watrous, J.: Quantum algorithms for solvable groups. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, Crete, Greece, pp. 60–67. ACM Press, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hallgren, S., Harrow, A.W. (2008). Superpolynomial Speedups Based on Almost Any Quantum Circuit. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics