Skip to main content

The Use of Photo Retrieval for EEG-Based Personal Identification

  • Conference paper
Computer-Human Interaction (APCHI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5068))

Included in the following conference series:

  • 1351 Accesses

Abstract

A research on biometry based on human brain activities has lately become attracted and emerging. In this study, we investigate the feasibility of personal identification based on photo retrieval using three-channel electroencephalogram. Nine photo images were randomly presented one after another to five subjects without training. The Principal Component Analysis and the Linear Discriminant Analysis were applied to perform the simulation of the personal identification. The algorithm correctly identified 82.5, 93.0, and 100.0 % of the subject using EEG activities with 5, 10, and 20-times averaging, respectively. This study reveals a future possibility of photo retrieval tasks to realize the personal identification system using human brain activities, which will yield rich controls of machine for the users of brain-computer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)

    Article  Google Scholar 

  2. Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239(2-3), 65–68 (1997)

    Article  Google Scholar 

  3. Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans Neural Syst. Rehabil. Eng. 14(2), 147–152 (2006)

    Article  Google Scholar 

  4. Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-Computer Interfaces Based on the Steady-State Visual-Evoked Response. IEEE Transactions on Rehabilitation Engineering 8(2), 211–214 (2000)

    Article  Google Scholar 

  5. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and Implementation of a Brain-Computer Interface With High Transfer Rates. IEEE Transactions on Biomedical Engineering 49(10), 1181–1186 (2002)

    Article  Google Scholar 

  6. Farwell, L.A., Donchin, E.: Taking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  7. Bayliss, J.D.: The use of the evoked potential P3 component for control in a virtual apartment. IEEE Transaction on Neural Systems and Rehabilitation Engineering 11(2), 113–116 (2003)

    Article  MathSciNet  Google Scholar 

  8. Marcel, S., Millan, J.R.: Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transaction on pattern analysis and machine intelligence 29(4), 743–752 (2007)

    Article  Google Scholar 

  9. Paranjape, R.B., Mahovsky, J., Benedicenti, L., Koles, Z.: The Electroencephalogram as a Biometric. In: Proc. of Canadian Conf. on Electrical and Computer Eng., vol. 2, pp. 1363–1366 (2001)

    Google Scholar 

  10. Poulos, M., Rangoussi, M.: Parametric person identification from the EEG using computational geometry. In: Proc. of the Sixth Int’l Conf. on Electronics, Circuits, and Systems, vol. 2, pp. 1005–1012 (1999)

    Google Scholar 

  11. Palaniappan, R., Mandic, D.P.: Biometrics from brain electrical activity: a machine learning approach. IEEE Transaction on pattern analysis and machine intelligence 29(4), 738–742 (2007)

    Article  Google Scholar 

  12. Thorpe, J., van Oorschot, P.C., Somayaji, A.: Pass-thoughts: Authenticating With Our Minds. In: Proc. of ACSA 2005 New Security Paradigms Workshop (2005)

    Google Scholar 

  13. (The photo images in this study were downloaded only for the research purpose), See the website, http://www.flickr.com/

  14. Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Seongil Lee Hyunseung Choo Sungdo Ha In Chul Shin

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Touyama, H., Hirose, M. (2008). The Use of Photo Retrieval for EEG-Based Personal Identification. In: Lee, S., Choo, H., Ha, S., Shin, I.C. (eds) Computer-Human Interaction. APCHI 2008. Lecture Notes in Computer Science, vol 5068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70585-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70585-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70584-0

  • Online ISBN: 978-3-540-70585-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics