Abstract
Basic narrowing is a restricted form of narrowing which constrains narrowing steps to a set of non-blocked (or basic) positions. Basic narrowing has a number of important applications including equational unification in canonical theories. Another application is analyzing termination of narrowing by checking the termination of basic narrowing, as done in pioneering work by Hullot. In this work, we study the modularity of termination of basic narrowing in hierarchical combinations of TRSs, including a generalization of proper extensions with shared subsystem. This provides new algorithmic criteria to prove termination of basic narrowing.
This work has been partially supported by the EU (FEDER) and Spanish MEC project TIN2007-68093-C02-02, Integrated Action Hispano-Alemana A2006-0007, the UPV grant 3249 PAID0607 and the UPV grant FPI-UPV 2006-01.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alpuente, M., Escobar, S., Iborra, J.: Modular termination of basic narrowing. Technical Report DSIC-II/04/08, Universidad Politécnica de Valencia (2007)
Alpuente, M., Escobar, S., Iborra, J.: Termination of Narrowing revisited. Theoretical Computer Science (to appear, 2008)
Alpuente, M., Falaschi, M., Gabbrielli, M., Levi, G.: The semantics of equational logic programming as an instance of CLP. In: Logic Programming Languages, pp. 49–81. The MIT Press, Cambridge (1993)
Alpuente, M., Falaschi, M., Levi, G.: Incremental Constraint Satisfaction for Equational Logic Programming. Theoretical Computer Science 142(1), 27–57 (1995)
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1-2), 133–178 (2000)
Bachmair, L., Dershowitz, N.: Commutation, transformation, and termination. In: Proc. of the 8th Int’l Conf. on Automated Deduction, January 1986, pp. 5–20 (1986)
Comon-Lundh, H.: Intruder Theories (Ongoing Work). In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 1–4. Springer, Heidelberg (2004)
Cortier, V., Delaune, S., Lafourcade, P.: A Survey of Algebraic Properties used in Cryptographic Protocols. Journal of Computer Security 14(1), 1–43 (2006)
Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical Computer Science, vol. B, pp. 244–320. Elsevier Science, Amsterdam (1990)
Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for the NRL Protocol Analyzer and its Meta-Logical Properties. TCS 367 (2006)
Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007)
Fay, M.: First-Order Unification in an Equational Theory. In: Fourth Int’l Conf. on Automated Deduction, pp. 161–167 (1979)
Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Practice. Journal of Logic Programming 19&20, 583–628 (1994)
Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS, vol. 353. Springer, Heidelberg (1989)
Hullot, J.-M.: Canonical Forms and Unification. In: Bibel, W. (ed.) CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)
Hullot, J.-M.: Compilation de Formes Canoniques dans les Théories q́uationelles. Thése de Doctorat de Troisième Cycle. PhD thesis, Université de Paris Sud, Orsay (France) (1981)
Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992)
Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. HOSC, 123–160 (2007)
Middeldorp, A., Hamoen, E.: Completeness Results for Basic Narrowing. J. of Applicable Algebra in Engineering, Comm. and Computing 5, 313–353 (1994)
Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
Prehofer, C.: On Modularity in Term Rewriting and Narrowing. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 253–268. Springer, Heidelberg (1994)
Krishna Rao, M.R.K.: Modular proofs for completeness of hierarchical term rewriting systems. Theoretical Computer Science (January 1995)
Réty, P.: Improving Basic Narrowing Techniques. In: Lescanne, P. (ed.) RTA 1987. LNCS, vol. 256. Springer, Heidelberg (1987)
TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge (2003)
Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inf. Process. Lett. 25(3), 141–143 (1987)
Urbain, X.: Modular & incremental automated termination proofs. Int. J. Approx. Reasoning 32(4), 315–355 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alpuente, M., Escobar, S., Iborra, J. (2008). Modular Termination of Basic Narrowing. In: Voronkov, A. (eds) Rewriting Techniques and Applications. RTA 2008. Lecture Notes in Computer Science, vol 5117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70590-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-70590-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70588-8
Online ISBN: 978-3-540-70590-1
eBook Packages: Computer ScienceComputer Science (R0)