Abstract
We present a new approach for termination proofs that uses polynomial interpretations (with possibly negative coefficients) together with the “maximum” function. To obtain a powerful automatic method, we solve two main challenges: (1) We show how to adapt the latest developments in the dependency pair framework to our setting. (2) We show how to automate the search for such interpretations by integrating “ max ” into recent SAT-based methods for polynomial interpretations. Experimental results support our approach.
Supported by the DFG (Deutsche Forschungsgemeinschaft) under grant GI 274/5-2 and the FWF (Austrian Science Fund) project P18763.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)
Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)
Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. Technical Report AIB-2008-03, RWTH Aachen, Germany (2008), http://aib.informatik.rwth-aachen.de
Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)
Giesl, J., Thiemann, R., Schneider-Kamp, P.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
Giesl, J., Thiemann, R., Swiderski, S., Schneider-Kamp, P.: Proving termination by bounded increase. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 443–459. Springer, Heidelberg (2007)
Hardin, T., Laville, A.: Proof of termination of the rewriting system SUBST on CCL. Theoretical Computer Science 46(2,3), 305–312 (1986)
Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199(1,2), 172–199 (2005)
Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)
Hong, H., Jakuš, D.: Testing positiveness of polynomials. Journal of Automated Reasoning 21(1), 23–38 (1998)
Koprowski, A.: TPA: Termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)
Lankford, D.: On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)
Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)
Nguyen, M., De Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination analysis of logic programs. KU Leuven (2008)
Toyama, Y.: Counterexamples to the termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)
Zantema, H.: Termination. In: Terese (ed.) Term Rewriting Systems, ch. 6, pp. 181–259. Cambridge University Press, Cambridge (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H. (2008). Maximal Termination. In: Voronkov, A. (eds) Rewriting Techniques and Applications. RTA 2008. Lecture Notes in Computer Science, vol 5117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70590-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-70590-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70588-8
Online ISBN: 978-3-540-70590-1
eBook Packages: Computer ScienceComputer Science (R0)