Abstract
This paper is devoted to the statement and proof of a theorem showing how recursive definitions whose associated call graphs satisfy certain shape conditions can be converted systematically into efficient bottom-up tabulation schemes. The increase in efficiency can be dramatic, typically transforming an exponential time algorithm into one that takes only quadratic time. The proof of the theorem relies heavily on the theory of zips developed by Roland Backhouse and Paul Hoogendijk.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Backhouse, R.C., Doornbos, H., Hoogendijk, P.: A Class of Commuting Relators. In: STOP workshop, Ameland, The Netherlands (September 1992), http://www.cs.nott.ac.uk/~rcb/MPC/papers/zips.ps.gz
Backhouse, R.C., Hoogendijk, P.: Generic Properties of Datatypes. In: Backhouse, R., Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 97–132. Springer, Heidelberg (2003)
Bird, R.S., Hinze, R.: Trouble shared is trouble halved. In: ACM SIGPLAN Haskell Workshop, Uppsala, Sweden, pp. 1–6 (August 2003)
Bird, R.S., de Moor, O.: The Algebra of Programming. Prentice Hall International Series in Computer Science (1997)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Algorithms. MIT Press, Cambridge Mass (1997)
Hoogendijk, P.: A Generic Theory of Data Types Ph.D Thesis, Eindhoven Technical University (1997)
Hoogendijk, P., Backhouse, R.C.: When do datatypes commute? In: Moggi, E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 242–260. Springer, Heidelberg (1997)
Steffen, P., Giegerich, R.: Table design in dynamic programming. Information and Computation 204(9) (September 2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bird, R.S. (2008). Zippy Tabulations of Recursive Functions. In: Audebaud, P., Paulin-Mohring, C. (eds) Mathematics of Program Construction. MPC 2008. Lecture Notes in Computer Science, vol 5133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70594-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-70594-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70593-2
Online ISBN: 978-3-540-70594-9
eBook Packages: Computer ScienceComputer Science (R0)