Skip to main content

A Pattern Selection Algorithm in Kernel PCA Applications

  • Conference paper
Software and Data Technologies (ICSOFT 2006)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 10))

Included in the following conference series:

Abstract

Principal Component Analysis (PCA) has been extensively used in different fields including earth science for spatial pattern identification. However, the intrinsic linear feature associated with standard PCA prevents scientists from detecting nonlinear structures. Kernel-based principal component analysis (KPCA), a recently emerging technique, provides a new approach for exploring and identifying nonlinear patterns in scientific data. In this paper, we recast KPCA in the commonly used PCA notation for earth science communities and demonstrate how to apply the KPCA technique into the analysis of earth science data sets. In such applications, a large number of principal components should be retained for studying the spatial patterns, while the variance cannot be quantitatively transferred from the feature space back into the input space. Therefore, we propose a KPCA pattern selection algorithm based on correlations with a given geophysical phenomenon. We demonstrate the algorithm with two widely used data sets in geophysical communities, namely the Normalized Difference Vegetation Index (NDVI) and the Southern Oscillation Index (SOI). The results indicate the new KPCA algorithm can reveal more significant details in spatial patterns than standard PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Von Storch, H., Zwiers, F.W.: Statistical Analysis in Climate Research. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Haddad, R.A., Parsons, T.W.: Digital Signal Processing: Theory, Applications, and Hardware. Computer Science Press (1991)

    Google Scholar 

  3. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  4. Lorenz, E.N.: Empirical orthogonal functions and statistical weather prediction. In: Final Report, Statistical Forecasting Project, 1959. Massachusetts Institute of Technology, Dept. of Meteorology, pp. 29–78 (1959)

    Google Scholar 

  5. Wallace, J.M., Smith, C., Bretherton, C.S.: Singular Value Decomposition of Wintertime Sea Surface Temperature and 500-mb Height Anomalies. Journal of Climate 5, 561–576 (1992)

    Google Scholar 

  6. Krzanowski, W.J.: Principles of Multivariate Analysis: A User’s Perspective. Oxford University Press, Oxford (1988)

    MATH  Google Scholar 

  7. Emery, W.J., Thomson, R.E.: Data Analysis Methods in Physical Oceanography. Elsevier, Amsterdam (2001)

    Google Scholar 

  8. Li, Z., Kafatos, M.: Interannual Variability of Vegetation in the United States and Its Relation to El Niño/Southern Oscillation. Remote Sensing of Environment 71, 239–247 (2000)

    Article  Google Scholar 

  9. Thompson, D.W.J., Wallace, J.M.: Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability. Journal of Climate 13, 1000–1016 (2000)

    Article  Google Scholar 

  10. Hastie, T., Stuetzle, W.: Principal Curves. Journal of the American Statistical Association 84, 502–516 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kramer, M.A.: Nonlinear Principal Component Analysis Using Autoassociative Neural Networks. AIChE J. 37(2), 233–243 (1991)

    Google Scholar 

  12. Monahan, A.H.: Nonlinear Principal Component Analysis: Tropical Indo–Pacific Sea Surface Temperature and Sea Level Pressure. Journal of Climate 14, 219–233 (2001)

    Google Scholar 

  13. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  14. Tan, J.: Applications of Kernel PCA Methods to Geophysical Data. George Mason University, PhD Thesis (2005)

    Google Scholar 

  15. Tan, J., Yang, R., Kafatos, M.: Kernel PCA Analysis for Remote Sensing Data. In: 18th Conference on Climate Variability and Change, Altanta, GA, CD-ROM, Paper P1.5. American Meteorological Society (2006)

    Google Scholar 

  16. Schölkopf, B., Burges, C.J.C., Smola, J.: Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  17. Mika, S., Schölkopf, B., Smola, A., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and De-noising in Feature Spaces. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 536–542. MIT Press, Cambridge (1999)

    Google Scholar 

  18. Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.: Input Space vs. Feature Space in Kernel-Based Methods. IEEE Transactions on Neural Networks 10, 1000–1017 (1999)

    Article  Google Scholar 

  19. Cracknell, A.P.: The Advanced Very High Resolution Radiometer. Taylor & Francis Inc, Abington (1997)

    Google Scholar 

  20. GES DISC (NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)): Pathfinder AVHRR Land Data (2006), (Last accessed on February 9, 2006), ftp://disc1.gsfc.nasa.gov/data/avhrr/Readme.pal

  21. Philander, S.G.: El Niño, La Niña, and the Southern Oscillation. Academic Press, London (1990)

    Google Scholar 

  22. Ropelewski, C.F., Jones, P.D.: An Extension of the Tahiti–Darwin Southern Oscillation Index. Monthly Weather Review 115, 2161–2165 (1987)

    Google Scholar 

  23. CPC (Climate Predication Center/NOAA): (STAND TAHITI - STAND DARWIN) SEA LEVEL PRESS ANOMALY (2006), (Last accessed on February 5, 2006), http://www.cpc.ncep.noaa.gov/data/indices/soi

  24. NDMC (National Drought Mitigation Center): What is Drought? (2006), (Last accessed on February 8, 2006), http://www.drought.unl.edu/whatis/elnino.htm

  25. Cox, T.F., Cox, M.A.: Multidimensional Scaling. Chapman and Hall, Boca Raton (2000)

    Google Scholar 

  26. Roweis, S., Saul, L.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  27. Tenenbaum, J.B., de Silva, V., Langford, J.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  28. Ham, J., Lee, D., Mika, S., Schölkopf, B.: Kernel View of the Dimensionality Reduction of Manifolds. In: Proceedings of the 21st International Conference on Machine Learning (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Filipe Boris Shishkov Markus Helfert

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, R., Tan, J., Kafatos, M. (2008). A Pattern Selection Algorithm in Kernel PCA Applications. In: Filipe, J., Shishkov, B., Helfert, M. (eds) Software and Data Technologies. ICSOFT 2006. Communications in Computer and Information Science, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70621-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70621-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70619-9

  • Online ISBN: 978-3-540-70621-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics