Skip to main content

Loopholes in Experiments

  • Chapter
  • First Online:
Compendium of Quantum Physics

Shortly after John S. Bell's proof of his celebrated theorem (► Bell's Theorem) in 1964 [6] experiments started [13] that tried to check whether nature actually was as counterintuitive as the theorem implied. At the same time it became clear that it would be very difficult to carry out an experiment that tested Bell's original version of the inequality, because it had been derived using very stringent assumptions.

The first difficulty was with Bell's assumption of perfect correlations. That is, if the measurement functions of the hidden variable model are A(a, λ) and B(b, λ), where λ denotes the hidden variable, a and b the analyzer directions, Bell had assumed that they obey A(a, λ) = −B(a, λ). This assumption, however, is difficult to justify, because no real experiment will ever live up to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Accardi, L., Regoli, M.: Locality and Bell's inequality (2000). URL http://www.arxiv.org/abs/quant-ph/0007005.Quant-ph/0007005

  2. Adenier, G., Khrennikov, A.: Is the fair sampling assumption supported by EPR experiments? J. Phys. B (2006)

    Google Scholar 

  3. Altepeter, J., Jeffrey, E., Kwiat, P.: Phase-compensated ultra-bright source of entangled photons. Opt. Exp. 13, 8951–8959 (2005). URL http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-22-8951

    Article  Google Scholar 

  4. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982). DOI 10.1103/PhysRevLett.49.1804

    Article  MathSciNet  ADS  Google Scholar 

  5. Barrett, J., Collins, D., Hardy, L., Kent, A., Popescu, S.: Quantum nonlocality, bell inequalities, and the memory loophole. Phys. Rev. A 66, 042111 (2002). DOI 10.1103/ PhysRevA.66.042111

    Article  ADS  Google Scholar 

  6. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  7. Bell, J.S.: Bertlmann's socks and the nature of reality. J. Phys. 42, C2 41–61 (1981)

    Google Scholar 

  8. Brunner, N., Gisin, N., Scarani, V., Simon, C.: Detection loophole in asymmetric bell experiments. Phys. Rev. Lett. 98, 220403 (2007). DOI 10.1103/PhysRevLett.98.220403. k URL http://link.aps.org/abstract/PRL/v98/e220403

    Article  ADS  Google Scholar 

  9. Cabello, A., Larsson, J.A.: Minimum detection efficiency for a loophole-free atom-photon bell experiment. Phys. Rev. Lett. 98, 220402 (2007). DOI 10.1103/PhysRevLett.98.220402. URL http://link.aps.org/abstract/PRL/v98/e220402

    Article  ADS  Google Scholar 

  10. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974). DOI 10.1103/PhysRevD.10.526

    Article  ADS  Google Scholar 

  11. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969). DOI 10.1103/PhysRevLett.23.880

    Article  ADS  Google Scholar 

  12. Eberhard, P.H.: Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747–R750 (1993). DOI 10.1103/ PhysRevA.47.R747

    Article  ADS  Google Scholar 

  13. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972). DOI 10.1103/PhysRevLett.28.938

    Article  ADS  Google Scholar 

  14. Freyberger, M., Aravind, P., Horne, M., Shimony, A.: Proposed test of Bell's inequality without a detection loophole using entangled Rydberg atoms. Phys. Rev. A 53, 1232–1244 (1996). DOI 10.1103/PhysRevA.53.1232

    Article  ADS  Google Scholar 

  15. Fry, E.S., Walther, T., Li, S.: Proposal for a loophole-free test of the Bell inequalities. Phys. Rev. A 52, 4381–4395 (1995). DOI 10.1103/PhysRevA.52.4381

    Article  MathSciNet  ADS  Google Scholar 

  16. Garg, A., Mermin, N.: Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987). DOI 10.1103/PhysRevD.35.3831

    Article  ADS  Google Scholar 

  17. Gill, R.D.: Accardi contra Bell (cum mundi): The impossible coupling. In: M. Moore, S. Froda, L. C. (eds.) Mathematical Statistics and Applications: Festschrift for Constance van Eeden, IMS Lecture Notes - Monograph Series, vol. 42, pp. 133–154. Institute of Mathematical Statistics, Beachwood, Ohio (2003). URL http://arxiv.org/abs/quant-ph/0110137

  18. Gill, R.D., Weihs, G., Zeilinger, A., Zukowski, M.: Comment on “Exclusion of time in the theorem of Bell” by K. Hess and W. Philipp. Europhys. Lett. 61, 282–283 (2003)

    Article  ADS  Google Scholar 

  19. Kurtsiefer, C., Oberparleiter, M., Weinfurter, H.: High efficiency entangled photon pair collection in type II parametric fluorescence. Phys. Rev. A 64, 023802 (2001). DOI 10.1103/PhysRevA.64.023802

    Article  ADS  Google Scholar 

  20. Larsson, J.A., Gill, R.D.: Bell's inequality and the coincidence-time loophole. Europhys. Lett. 67(5), 707–713 (2004). DOI 10.1209/epl/i2004-10124-7. URL http://stacks.iop.org/0295-5075/67/707

    Article  ADS  Google Scholar 

  21. Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell Inequality Violation with Two Remote Atomic Qubits. Phys. Rev. Lett. 100, 150404 (2008). DOI 10.1103/ PhysRevLett.100.150404

    Article  ADS  Google Scholar 

  22. Oemrawsingh, S.S.R., Aiello, A., Eliel, E.R., Nienhuis, G., P. Woerdman, J.: How to observe high-dimensional two-photon entanglement with only two detectors. Phys. Rev. Lett. 92, 217901 (2004). DOI 10.1103/PhysRevLett.92.217901

    Article  ADS  Google Scholar 

  23. Pearle, P.: Hidden variable example based upon data rejection. Phys. Rev. D 2, 1418–1425 (1970). DOI 10.1103/PhysRevD.2.1418

    Article  ADS  Google Scholar 

  24. Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental violation of a bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  Google Scholar 

  25. Scheidl, T., Ursin, R., Kofler, J., Ramelow, S., Ma, X.-S., Herbst, T., Ratschbacher, L., Fedrizzi, A., Langford, N., Jennewein, T., Zeilinger, A.: Violation of local realism with freedom of choice. arXiv:0811.3129v1 [quant-ph]. URL http://arxiv.org/abs/0811.3129v1

  26. Takeuchi, S., Kim, J., Yamamoto, Y., Hogue, H.H.: Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063–1065 (1999). DOI 10.1063/1.123482

    Article  ADS  Google Scholar 

  27. Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998). DOI 10.1103/PhysRevLett.81.3563

    Article  ADS  Google Scholar 

  28. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Omer, B., Furst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007). DOI 10.1038/nphys629

    Article  Google Scholar 

  29. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998). DOI 10.1103/PhysRevLett.81.5039

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weihs, G. (2009). Loopholes in Experiments. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_109

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics