Lüders measurements offer an important characterization of the compatibility of ►observables A,B with discrete spectra: A and B commute if and only if the expectation value of B is not changed by a nonselective Lüders operation of A in any state T [1]. This result is the basis for the axiom of local commutativity in relativistic quantum field theory: the mutual commutativity of observables from local algebras associated with two spacelike separated regions of spacetime ensures, and is necessitated by, the impossibility of influencing the outcomes of measurements in one region through nonselective measurements performed in the other region.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Primary Literature
G. Lüders: Über die Zustandsänderung durch den Meßprozeß, Annalen der Physik 8, 322–328 (1951), available on-line at http://www.physik.uni-augsburg.de/annalen/history/historic-papers/1951_443_322-328.pdf English translation by K.A. Kirkpatrick: Concerning the state-change due to the measurement process, Ann. Phys. (Leipzig) 15, 663–670 (2006)
J. von Neumann: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932, 2nd edn. 1996); English translation (by R. Beyer): Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton 1955)
E. B. Davies: Quantum Theory of Open Systems (Academic, London 1976)
A. M. Gleason: Measures on the Closed Subspaces of a Hilbert Space, Journal of Mathematics and Mechanics 6, 885–893 (1957)
G. Cassinelli, N. Zanghi: Conditional Probabilities in Quantum Mechanics. I. Conditioning with Respect to a Single Event, Il Nuovo Cimento 73, 237–245 (1983)
K. Bugajska, S. Bugajski: The Projection Postulate in Quantum Logic, Bulletin de L'Academie Polonaise des Sciences, Ser. sci. math., astr. et phys. Bull. Acad. Pol. Sci., Serie des sc. math. astr. et phys. 21, 873–887 (1973)
P. Busch: Unsharp reality and joint measurements for spin observables, Physical Review D 33, 2253–2261 (1986)
Secondary Literature
P. Busch, P. Lahti, P. Mittelstaedt: The Quantum Theory of Measurement (Springer, Berlin 1991, 2nd revised edn. 1996)
E. Beltrametti, G. Cassinelli: The Logic of Quantum Mechanics (Addison-Wesley, Reading, MA 1981)
P. J. Lahti, S. Bugajski: Fundamental Principles of Quantum Theory. II. From a Convexity Scheme to the DHB Theory, International Journal of Theoretical Physics 24, 1051–1080 (1985)
P. Busch, J. Singh: Lüders theorem for unsharp quantum measurements, Physics Letters A 249, 10–12 (1998)
A, Aries, S. Gudder: Fixed points of quantum operations, Journal of Mathematical Physics 43, 5872–5881 (2002)
M. B. Plenio, P.L. Knight: The quantum-jump approach to dissipative dynamics in quantum optics, Reviews of Modern Physics 70, 101–144 (1998)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Busch, P., Lahti, P. (2009). Lüders Rule. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_110
Download citation
DOI: https://doi.org/10.1007/978-3-540-70626-7_110
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70622-9
Online ISBN: 978-3-540-70626-7
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)