Skip to main content

Measurement Theory

  • Chapter
  • First Online:
Compendium of Quantum Physics

The term measurement theory refers to that part of a physical theory in which the empirical and operational content of the concepts of the theory is determined. Measurements are analyzed both as operational procedures defining the ► observables of the theory and as physical processes which are themselves subject to the laws of physics.

In classical physics, measurements are performed in order to determine the values of one or several observables of the physical system under consideration. Classical physics allowed the idealized notion that every physical quantity has a definite value at any time, and that this value can be determined with certainty by measurement without influencing the object system in a significant way. By contrast, in quantum mechanics both features fail to hold without strong qualifications. Accordingly, in their seminal paper of 1935 [1], Einstein, Podolsky and Rosen used elements of this description as a sufficient criterion of physical reality, applicable both in classical and quantum mechanics:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Primary Literature

  1. Einstein, A., B. Podolsky, N. Rosen: Can quantum-mechanical description of physical reality be considered complete? Physical Review 47, 777–780 (1935).

    Article  ADS  Google Scholar 

  2. Heisenberg, W.: Ü ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43, 172–198 (1927).

    Article  ADS  Google Scholar 

  3. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580–590 (1928).

    Article  ADS  Google Scholar 

  4. Neumann, J. von: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932, 2nd ed. 1996); English translation (by R. Beyer): Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton 1955).

    MATH  Google Scholar 

  5. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften 23, 807–812; 824–828; 844–849 (1935). English translation in [12].

    Article  ADS  Google Scholar 

  6. Ozawa, M.: Quantum measuring processes of continuous observables, Journal of Mathematicsl Physics 25, 79–87 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  7. Davies, E.B., J.T. Lewis: An operational approach to quantum Probability, Communications in Mathematical Physics 17, 239–260 (1970).

    Article  ADS  MathSciNet  Google Scholar 

Secondary Literature

  1. Mittelstaedt, P.: Philosophical Problems of Modern Physics (D. Reidel, Dordrecht 1976).

    Book  Google Scholar 

  2. Busch, P., P. Lahti, P. Mittelstaedt: The Quantum Theory of Measurement (Springer, Berlin 1991, 2nd revised edn. 1996).

    Book  Google Scholar 

  3. Bub, J.: Interpreting the Quantum World (Cambridge University Press, Cambridge 1997).

    MATH  Google Scholar 

  4. Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process (Cambridge University Press, Cambridge 1997).

    Book  Google Scholar 

  5. Wheeler, J.A., W.H. Zurek.: Quantum Theory and Measurement (Princeton University Press, Princeton 1983).

    Book  Google Scholar 

  6. Braginsky, V.B., F.Ya. Khalili: Quantum Measurement, edited by K.S. Thorne, (Cambridge University Press, Cambridge 1992).

    Chapter  Google Scholar 

  7. Busch, P., M. Grabowski, P. Lahti: Operational Quantum Physics (Springer, Berlin 1995, 2nd corrected printing 1997).

    Book  Google Scholar 

  8. Muynck, W.M. de: Foundations of Quantum Mechanics: An Empiricist Approach (Kluwer, Dordrecht, 2002).

    Book  Google Scholar 

  9. Breuer, H.-B., F. Petruccione: The Theory of Open Quantum Systems, (Oxford University Press, Oxford 2002).

    MATH  Google Scholar 

  10. Paris, M.G.A., J. Řeháček (Eds.): Quantum State Estimation, (Springer, Berlin, 2004).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Busch, P., Lahti, P. (2009). Measurement Theory. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_117

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics