Skip to main content

Observable

  • Chapter
  • First Online:
Compendium of Quantum Physics

The term observable has become the standard name in quantum mechanics for what used to be called physical quantity or measurable quantity in classical physics. This term derives from observable quantity (“beobachtbare Grösse”), which was used by Werner Heisenberg in his groundbreaking work on ► matrix mechanics [1] to emphasize that the meaning of a physical quantity must be specified by means of an operational definition. Together with a state (► states in quantum mechanics), an observable determines the probabilities of the possible outcomes of a measurement of that observable on the quantum system prepared in the given state. Conversely, observables are identified by the totalities of their measurement outcome probabilities. Examples of observables in quantum mechanics are position, velocity, momentum, angular momentum, spin, and energy. ► Spin; Stern-Gerlach experiment; Vector model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33 879–893 (1925).

    Article  ADS  Google Scholar 

  2. Born, M.: Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37, 863–867 (1926).

    Article  ADS  Google Scholar 

  3. von Neumann, J.: Mathematische Begründung der Quantenmechanik. Göttinger Nachrichten 1–57 (1927). Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. G öttinger Nachrichten 245–272 (1927). Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Mathematische Annalen 102, 49–131 (1929). This all is summarized in his book Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932, 2nd ed. 1996); English translation (by R. Beyer): Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton 1955).

    Google Scholar 

  4. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43, 172–198 (1927).

    Article  ADS  Google Scholar 

  5. von Neumann, J.: Über Funktionen von Funktionaloperatoren. Annals of Mathematics 32, 191–226 (1931).

    Article  MathSciNet  Google Scholar 

  6. Ludwig, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien. Zeitschrift für Physik 181 233–260 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  7. Davies, E.B., J.T. Lewis: An Operational Approach to Quantum Probability. Communication in Mathematical Physics 17, 239–260 (1970).

    Article  ADS  MathSciNet  Google Scholar 

Secondary Literature

  1. Davies, E.B.: Quantum Theory of Opens Systems (Academic, New York 1976).

    Google Scholar 

  2. Berberian, S.K.: Notes on Spectral Theory (D. van Nostrand, Princeton 1966).

    MATH  Google Scholar 

  3. Helstrom, C.W.: Quantum Detection and Estimation Theory (Academic, New York 1976).

    MATH  Google Scholar 

  4. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory (North Holland, Amsterdam 1982).

    MATH  Google Scholar 

  5. Ludwig, G.: Foundations of Quantum Mechanics (Springer, Berlin 1983).

    Book  Google Scholar 

  6. Kraus, K.: States, Effects, and Operations (Springer, Berlin 1983).

    MATH  Google Scholar 

  7. Busch, P., T. Heinonen, P. Lahti: Heisenberg's Uncertainty Principle, Physics Reports 452 (2007) 155–176.

    Article  ADS  Google Scholar 

  8. Busch, P., M. Grabowski, P. Lahti: Operational Quantum Physics, Springer, LNP m31, 1995, 2nd Corrected Printing 1997.

    Google Scholar 

  9. Peres, A.: Quantum Theory: Concepts and Methods (Kluwer, Dordrecht 1993).

    MATH  Google Scholar 

  10. Nielsen, M.A., I.L.Chuang: Quantum Computation and Quantum Information (Cambridge University Press, Cambridge 2000).

    MATH  Google Scholar 

  11. Stenholm, S., K.-A. Suominen: Quantum Approach to Information (Wiley, New York 2005).

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Busch, P., Lahti, P. (2009). Observable. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_130

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_130

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics