Skip to main content

Quantum Hall Effect

  • Chapter
  • First Online:
Compendium of Quantum Physics

The quantized Hall effect (QHE) was discovered early in February 1980, when Klaus von Klitzing performed a series of experiments at the high-field magnetlaboratories in Grenoble, France, in order to investigate the transport properties of silicon based metal-oxide-semiconductor field-effect-transistors (MOSFET’s), which up to now form the basic building blocks of highest-integrated electrical circuits. The aim was to improve on the mobility of charge carriers in these devices. This requires to understand, which kind of scattering processes (caused by surface roughness, interface charges, impurities, etc.) has the strongest effect on the motion of the ►electrons in the thin conducting layer at the interface between silicon and silicon-oxide, which is only a few nanometers thick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. K. von Klitzing, G. Dorda, and M. Pepper: New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Phys. Rev. Lett. 45, 494 (1980).

    Article  ADS  Google Scholar 

  2. A. B. Fowler, F. F. Fang, W. E. Howard, and P. J. Stiles: Magneto-Oscillatory Conductance in Silicon Surfaces, Phys. Rev. Lett. 16, 901 (1966).

    Article  ADS  Google Scholar 

  3. D. C. Tsui, H. L. Störmer, and A. C. Gossard: Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1559 (1982).

    Article  ADS  Google Scholar 

  4. R. B. Laughlin: Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  5. A. M. Thompson and D. G. Lampard: A New Theorem in Electrostatics and its Application to Calculable Standards of Capacitance, Nature 177, 888 (1956).

    Article  ADS  Google Scholar 

  6. T. J. Quinn: News from the BIPM, Metrologia 26, 69 (1989).

    Article  ADS  Google Scholar 

  7. F. Delahaye, T. J. Witt, R. E. Elmquist, and R. F. Dziuba: Comparison of Quantum Hall Effect Resistance Standards of the NIST and the BIPM, Metrologia 37, 173 (2000).

    Article  ADS  Google Scholar 

  8. F. Delahaye and B. Jeckelmann: Revised Technical Guidelines for Reliable DC Measurements of the Quantized Hall Resistance, Metrologia 40, 217 (2003).

    Article  ADS  Google Scholar 

  9. E. R. Williams, R. L. Steiner, D. B. Nevell, and P. T. Olsen: Accurate Measurement of the Planck Constant, Phys. Rev. Lett. 81, 2404 (1998).

    Article  ADS  Google Scholar 

  10. U. Klaß, W. Dietsche, K. von Klitzing, and K. Ploog: Imaging of the Dissipation in Quantum-Hall-Effect Experiments, Z. Phys. B - Condensed Matter 82, 351 (1991).

    Article  ADS  Google Scholar 

  11. Y. Y. Wei, J. Weis, K. v. Klitzing, and K. Eberl: Single-Electron Transistor as an Electrometer Measuring Chemical Potential Variations, Appl. Phys. Lett. 71, 2514 (1997).

    Article  ADS  Google Scholar 

  12. M. Büttiker: Absence of Backscattering in the Quantum Hall Effect in Multiprobe Conductors, Phys. Rev. B 38, 9375 (1988).

    Article  ADS  Google Scholar 

  13. D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman: Electrostatics of Edge States, Phys. Rev. B 46, 4026 (1992).

    Article  ADS  Google Scholar 

  14. Y. Y. Wei, J. Weis, K. v. Klitzing, and K. Eberl: Edge Strips in the Quantum Hall Regime Imaged by a Single-Electron Transistor, Phys. Rev. Lett. 81, 1674 (1998).

    Article  ADS  Google Scholar 

  15. J. Weis, Y. Y. Wei, and K. v. Klitzing: Single-Electron Transistor Probes Two-Dimensional Electron System in High Magnetic Fields, Physica E 3, 23 (1998).

    Article  ADS  Google Scholar 

  16. D. B. Chklovskii, K. A. Matveev, and B. I. Shklovskii: Ballistic Conductance of Interacting Electrons in the Quantum Hall Regime, Phys. Rev. B 47, 12605 (1993).

    Article  ADS  Google Scholar 

  17. K. Lier and R. R. Gerhardts: Self-Consistent Calculation of Edge Channels in Laterally Confined Two-Dimensional Electron Systems, Phys. Rev. B 50, 7757 (1994).

    Article  ADS  Google Scholar 

  18. J. H. Oh and R. R. Gerhardts: Self-Consistent Thomas-Fermi Calculation of Potential and Current Distributions in a Two-Dimensional Hall Bar Geometry, Phys. Rev. B 56, 13519 (1997).

    Article  ADS  Google Scholar 

  19. E. Ahlswede, P. Weitz, J. Weis, K. von Klitzing, and K. Eberl: Hall Potential Profiles in the Quantum Hall Regime Measured by a Scanning Force Microscope, Physica B 298, 562 (2001).

    Article  ADS  Google Scholar 

  20. E. Ahlswede, J. Weis, K. von Klitzing, and K. Eberl: Hall Potential Distribution in the Quantum Hall Regime in the Vicinity of a Potential Probe Contact, Physica E 12, 165 (2002).

    Article  ADS  Google Scholar 

  21. A. Siddiki and R. R. Gerhardts: Incompressible Strips in Dissipative Hall Bars as Origin of Quantized Hall Plateaus, Phys. Rev. B 70, 195335 (2004).

    Article  ADS  Google Scholar 

  22. K. Güven and R. R. Gerhardts: Self-Consistent Local-Equilibrium Model for Density Profile and Distribution of Dissipative Currents in a Hall Bar Under Strong Magnetic Fields, Phys. Rev. B 67, 115327 (2003).

    Article  ADS  Google Scholar 

  23. S. Kanamaru, H. Suzuura, and H. Akera: Spatial Distribution of Electron Temperature in Quantum Hall Systems with Compressible and Incompressible Strips, J. Phys. Soc. Jpn. 75, 064701 (2006).

    Article  ADS  Google Scholar 

Secondary Literature

  1. T. Ando, A. B. Fowler, and F. Stern: Electronic Properties of Two-Dimensional Systems, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  2. B. Kramer, S. Kettemann, and T. Ohtsuki: Localization in the Quantum Hall regime, Physica E 20, 172 (2003).

    Article  ADS  Google Scholar 

  3. Z. F. Ezawa, Quantum Hall Effects, Field Theoretical Approaches and Related Topics (World Scientific, Singapore, 2000); see also www.fkf.mpg.de/klitzing/.

    Book  Google Scholar 

  4. H. Bachmair, E. O. Göbel, G. Hein, J. Melcher, B. Schumacher, J. Schurr, L. Schweitzer, and P. Warnecke: The von Klitzing resistance standard, Physica E 20, 14 (2003); for the most recent CODATA-recommended values of fundamental constants see: http://physics.nist.gov/cuu/constants/index.html.

    Article  ADS  Google Scholar 

  5. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  6. R. R. Gerhardts: The Effect of Screening on Current Distribution and Conductance Quantisation in Narrow Quantum Hall Systems, phys. stat. sol. (b) 245, 378 (2008).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerhardts, R.R., Weis, J., von Klitzing, K. (2009). Quantum Hall Effect. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_167

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_167

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics