Skip to main content

Symmetry

  • Chapter
  • First Online:
Compendium of Quantum Physics
  • 284 Accesses

Symmetry concepts play a central role in physics [13]. The ► invariance (► covari-ance) properties of a system under specific symmetry transformations can either be related to the conservation laws of physics or be able to establish the structure of the fundamental interactions. This is the most essential aspect of symmetry as it concerns the basic principles of physics and the interactions themselves and not only the properties of a particular system [14].

In geometry, figures or bodies are called symmetrical when they possess common measures or proportions. Thus the Platonic bodies can be rotated and turned at will without changing their regularity. Similarity transformations, for example, leave the geometric form of a figure unchanged, i.e. the proportional relationships of a circle, equilateral triangle, rectangle, etc. are retained, although the absolute dimensions of these figures can be enlarged or decreased. Therefore one can say that the form of a figure is determined by the similarity transformations that leave it unchanged (invariant). In mathematics, a similarity transformation is an example of an automorphism [12]. In general an automorphism is the mapping of a set (e.g. points, numbers, functions) onto itself that leaves unchanged the structure of this set (e.g. proportional relations in Euclidean space). Automorphisms can also be characterized algebraically in this way: (1) Identity I that maps every element of a set onto itself, is an automorphism. (2) For every automorphism T an inverse automorphism T' can be given, with T∙T' = T' ∙ T = I. (3) If S and T are automorphisms, then so is the successive application ST. A set of elements with a composition that fulfils these three axioms is called a group. The symmetry of a mathematical structure is determined by the group of those automorphisms that let it unchanged (invariant).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Primary Literature

  1. E. Noether: Invariante Variationsprobleme. Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl. (1918) 235–257

    Google Scholar 

  2. H. Weyl: Gruppentheorie und Quantenmechanik (Hirzel, Leipzig 1928; English trans. The Theory of Groups and Quantum Mechanics, Dover, New York 1950, 75)

    Google Scholar 

  3. E.P. Wigner: Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg, Braunschweig 1931; English trans. Group Theory, Academic, New York 1959)

    Book  Google Scholar 

  4. V. Bargmann: On Unitary Ray Representation of Continuous Groups. Ann. Math. 59, 1–46 (1954)

    Article  MathSciNet  Google Scholar 

  5. H. Weyl: Gravitation und Elektrizität. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin (1918) 465–480; H. Weyl: Gravitation and the Electron. Proc. Nat. Acad. Sci. U.S.A. 15, 323–334 (1929)

    Google Scholar 

  6. W. Pauli: Niels Bohr and the Development of Physics (Pergamon Press, London 1957)

    MATH  Google Scholar 

  7. T.D. Lee, C.N. Yang: Questions of Parity Conservation in Weak Interactions. Phys. Rev. 104, 254 (1956)

    Article  ADS  Google Scholar 

  8. C.N Yang, R.L. Mills: Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 96, 191–195 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Goldstone: Field theories with ‘Superconductor’ solutions. N. Cimento 19, 154–164 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  10. P.W. Higgs: Broken symmetries, massless particles, and gauge fields. Phys. Lett. 12, 132–133 (1964)

    Article  ADS  Google Scholar 

  11. M. Quack: Molecular spectra, reaction dynamics, symmetries and life. Chimia 57, 147–160 (2003)

    Article  Google Scholar 

Secondary Literature

  1. K. Mainzer: Symmetrien der Natur (De Gruyter, Berlin 1988, English trans. Symmetries of Nature, De Gruyter, New York 1996); K. Brading, E. Castellani (eds.): Symmetries in Physics (Cambridge University Press, Cambridge 2003)

    Google Scholar 

  2. K. Mainzer: Symmetry and Complexity. The Spirit and Beauty of Nonlinear Science (World Scientific, Singapore 2005)

    Book  Google Scholar 

  3. M.G. Doncel, A. Hermann, L. Michel, A. Pais (Eds.): Symmetries in Physics (1600–1980) (Servei de Publicacions, UAB, Barcelona 1987)

    Google Scholar 

  4. E. Schmutzer: Symmetrien und Erhaltungssätze der Physik (Akademie, Berlin 1972)

    Book  Google Scholar 

  5. H. Primas: Chemistry, Quantum Mechanics and Reductionism (Springer, Berlin 1983)

    Book  Google Scholar 

  6. H. Genz, R. Decker: Symmetrie und Symmetriebrechung in der Physik (Vieweg, Braunschweig 1991, p. 160)

    Book  Google Scholar 

  7. B.C. van Fraassen: Laws and Symmetry (Clarendon Press, Oxford 1989)

    Book  Google Scholar 

  8. H. Putnam: Mathematics, Matter and Method. Philosophical Papers Vol. 1 (Cambridge University Press, Cambridge 1975, p. 73)

    Google Scholar 

  9. M. Kuhlmann, H. Lyre, A. Wayne (eds.): Ontological Aspects of Quantum Field Theory (World Scientific, Singapore 2002)

    MATH  Google Scholar 

  10. K. Mainzer: Symmetry and Complexity in Dynamical Systems. Eur. Rev. Acad. Eur. 13 (suppl. 2), 29–48 (2005)

    Article  Google Scholar 

  11. K. Brading, E. Castellani (Eds.): Symmetries in Physics (Cambridge University Press, Cambridge 2003)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mainzer, K. (2009). Symmetry. In: Greenberger, D., Hentschel, K., Weinert, F. (eds) Compendium of Quantum Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70626-7_220

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70626-7_220

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70622-9

  • Online ISBN: 978-3-540-70626-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics