Skip to main content

Encoding Classifications into Lightweight Ontologies

  • Conference paper
Journal on Data Semantics VIII

Part of the book series: Lecture Notes in Computer Science ((JODS,volume 4380))

  • 379 Accesses

Abstract

Classifications have been used for centuries with the goal of cataloguing and searching large sets of objects. In the early days it was mainly books; lately it has also become Web pages, pictures and any kind of digital resources. Classifications describe their contents using natural language labels, an approach which has proved very effective in manual classification. However natural language labels show their limitations when one tries to automate the process, as they make it very hard to reason about classifications and their contents. In this paper we introduce the novel notion of Formal Classification, as a graph structure where labels are written in a propositional concept language. Formal Classifications turn out to be some form of lightweight ontologies. This, in turn, allows us to reason about them, to associate to each node a normal form formula which univocally describes its contents, and to reduce document classification and query answering to reasoning about subsumption.

This paper is an integrated and extended version of two papers: the first with title “Towards a Theory of Formal Classification” was presented at the 2005 International Workshop on Context and Ontologies; the second with title “Encoding Classifications into Lightweight Ontologies” was presented at the 2006 European Semantic Web Conference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: a new approach and an application. In: Proc. of the 2nd International Semantic Web Conference (ISWO’03). Sanibel Islands, Florida, USA (October 2003)

    Google Scholar 

  3. Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A Practical Guide. Forest P.,U.S., (December 1996)

    Google Scholar 

  4. eCl@ss: Standardized Material and Service Classification. see http://www.eclass-online.com/

    Google Scholar 

  5. Adami, G., Avesani, P., Sona, D.: Clustering documents in a web directory. In: Proceedings of Workshop on Internet Data management (WIDM-03) (2003)

    Google Scholar 

  6. Giunchiglia, F., Shvaiko, P.: Semantic matching. Knowledge Engineering Review 18(3), 265–280 (2003)

    Article  Google Scholar 

  7. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: An algorithm and an implementation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Berlin Heidelberg (2004)

    Google Scholar 

  8. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In: CoopIS (2005)

    Google Scholar 

  9. Giunchiglia, F., Yatskevich, M.: Element level semantic matching. In: Meaning Coordination and Negotiation workshop, ISWC (2004)

    Google Scholar 

  10. Giunchiglia, F., Yatskevich, M., Giunchiglia, E: Efficient semantic matching. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 272–280. Springer, Berlin Heidelberg (2005)

    Google Scholar 

  11. Gordon, A.D.: Classification. Monographs on Statistics and Applied Probability. Chapman-Hall/CRC, Second edition (1999)

    Google Scholar 

  12. Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store: DL reasoning with large numbers of individuals. In: Proc. of the 2004 Description Logic Workshop (DL 2004), pp. 31–40 (2004)

    Google Scholar 

  13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  14. Johnson-Laird: Mental Models. Harvard University Press, Cambridge (1983)

    Google Scholar 

  15. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Fisher, D.H. (ed.) Proceedings of ICML-97. 14th International Conference on Machine Learning, Nashville, US, pp. 170–178. Morgan Kaufmann Publishers, San Francisco, US (1997)

    Google Scholar 

  16. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  17. Bernardo Magnini, Luciano Serafini, and Manuela Speranza. Making explicit the semantics hidden in schema models. In: Proceedings of the Workshop on Human Language Technology for the Semantic Web and Web Services, held at ISWC-2003, Sanibel Island, Florida (October 2003)

    Google Scholar 

  18. McGuinness, D.L., Shvaiko, P., Giunchiglia, F., da Silva, P.P.: Towards explaining semantic matching. In: International Workshop on Description Logics at KR’04 (2004)

    Google Scholar 

  19. Miller, G.: WordNet: An electronic Lexical Database. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  20. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.M.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3), 103–134 (2000)

    Article  MATH  Google Scholar 

  21. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33(4), 65–70 (2004)

    Article  Google Scholar 

  22. The OpenNLP project. See http://opennlp.sourceforge.net/

    Google Scholar 

  23. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  24. Serafini, L., Zanobini, S., Sceffer, S, Bouquet, P.: Matching hierarchical classifications with attributes. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 4–18. Springer, Berlin Heidelberg (2006)

    Chapter  Google Scholar 

  25. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, London, UK (1984)

    MATH  Google Scholar 

  26. Sun, A., Lim, E.-P.: Hierarchical text classification and evaluation. In: ICDM, pp. 521–528 (2001)

    Google Scholar 

  27. MeSH: The National Library of Medicine’s controlled vocabulary thesaurus. see http://www.nlm.nih.gov/mesh/

    Google Scholar 

  28. DMoz: The Open Directory Project. See http://dmoz.org/

    Google Scholar 

  29. Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity. SIGMOD Rec. 33(4), 58–64 (2004)

    Article  Google Scholar 

  30. van Assem, M., Menken, M.R., Schreiber, G., Wielemaker, J., Wielinga, B.: A method for converting thesauri to RDF/OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 17–31. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  31. Wille, R.: Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications 23, 493–515 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefano Spaccapietra Paolo Atzeni François Fages Mohand-Saïd Hacid Michael Kifer John Mylopoulos Barbara Pernici Pavel Shvaiko Juan Trujillo Ilya Zaihrayeu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Giunchiglia, F., Marchese, M., Zaihrayeu, I. (2007). Encoding Classifications into Lightweight Ontologies. In: Spaccapietra, S., et al. Journal on Data Semantics VIII. Lecture Notes in Computer Science, vol 4380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70664-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70664-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70663-2

  • Online ISBN: 978-3-540-70664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics