Skip to main content

Abstract

Extraction, organization and exploitation of topological features are emerging topics in computer vision and graphics. However, such kind of features often exhibits weak robustness with respect to small perturbations and it is often unclear how to distinguish truly topological features from topological noise. In this paper, we present an introduction to persistence theory, which aims at analyzing multi-scale representations from a topological point of view. Besides, we extend the ideas of persistency to a more general setting by defining a set of discrete invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edelsbrunner, H., Harer, J.: Persistent homology — a survey. In: Twenty Years After (AMS) (to appear)

    Google Scholar 

  2. Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.: A barcode shape descriptor for curve point cloud data. Computers and Graphics 28, 881–894 (2004)

    Article  Google Scholar 

  3. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.J.: Persistence barcodes for shapes. International Journal of Shape Modeling 11, 149–187 (2005)

    Article  MATH  Google Scholar 

  4. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Size functions for 3D shape retrieval. In: SGP 2006: Proceedings of the fourth Eurographics Symposium on Geometry Processing, Aire-la-Ville, Switzerland. Eurographics Association, Switzerland, pp. 239–242 (2006)

    Google Scholar 

  5. Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Size functions for comparing 3D models. Pattern Recognition (2008), doi:10.1016/j.patcog.2008.02.003

    Google Scholar 

  6. Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recognition and Image Analysis 9, 596–603 (1999)

    Google Scholar 

  7. Li, X., Hu, C., Liang, J.: Simplicial edge representation of protein structures and alpha contact potential with confidence measure. Proteins 53, 792–805 (2003)

    Article  Google Scholar 

  8. Zomorodian, A., Guibas, L.J., Koehl, P.: Geometric filtering of pairwise atomic interactions applied to the design of efficient statistical potentials. Computer Aided Geometric Design 23, 531–544 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chazal, F., Lieutier, A.: The “lambda-medial axis”. Graphical Models 67, 304–331 (2005)

    Article  MATH  Google Scholar 

  10. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. In: Proc. ACM Symposium of Computational Geometry, pp. 184–193 (2007)

    Google Scholar 

  11. Bernardini, F., Mittleman, J., Rushmeier, H.E., Silva, C.T., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5, 349–359 (1999)

    Article  Google Scholar 

  12. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13, 43–72 (1994)

    Article  MATH  Google Scholar 

  13. Zomorodian, A.: Computing and Comprehending Topology: Persistence and Hierarchical Morse Complexes. PhD thesis, University of Illinois at Urbana-Champaign (2001)

    Google Scholar 

  14. Zomorodian, A.: Topology for Computing. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  15. Delaunay, B.: Sur la sphere vide. Otdelenie Matematicheskii i Estestvennyka Nauk 7, 793–800 (1934)

    Google Scholar 

  16. Lieutier, A.: Any open bounded subset of ℝn has the same homotopy type as its medial axis. Computer-Aided Design 36, 1029–1046 (2004)

    Article  Google Scholar 

  17. Matheron, G.: Examples of topological properties of skeletons & On the negligibility of the skeleton and the absolute continuity of erosions. In: Image Analysis and Math. Morphology: Theoretical Advances, vol. 2, pp. 216–256. Academic Press, London (1988)

    Google Scholar 

  18. Blum, H.: A transformation for extracting new descriptions of shape. In: Computer Methods in Images Analysis, pp. 153–171 (1977)

    Google Scholar 

  19. Blum, H., Nagel, R.: Shape description using weighted symmetric axis features. Pattern Recognition 10, 167–180 (1978)

    Article  MATH  Google Scholar 

  20. Milnor, J.: Morse theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  21. Banchoff, T.F.: Critical points and curvature for embedded polyhedral surfaces. Am. Math. Monthly 77, 465–485 (1970)

    Article  MathSciNet  Google Scholar 

  22. Attene, M., Biasotti, S., Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B.: Topological, geometric and structural approaches to enhance shape information. In: Eurographics Italian Chapter Conference, pp. 7–13 (2006)

    Google Scholar 

  23. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  24. Zomorodian, A., Carlsson, G.: Computing persistent homology. In: Proc. ACM Symposium on Computational Geometry, pp. 347–356 (2004)

    Google Scholar 

  25. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete & Computational Geometry 33, 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lang, S.: Undergraduate Algebra. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  27. Cerri, A., Biasotti, S., Giorgi, D.: k-dimensional size functions for shape description and comparison. In: ICIAP, pp. 795–800 (2007)

    Google Scholar 

  28. Baclawski, K.: Whitney numbers of geometric lattices. Advances in Mathematics 16, 125–138 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yuzvinsky, S.: Cohen-Macaulay rings of sections. Advances in Mathematics 63, 172–195 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner Ovidio Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moroni, D., Salvetti, M., Salvetti, O. (2008). Multi-scale Representation and Persistency for Shape Description. In: Perner, P., Salvetti, O. (eds) Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. MDA 2008. Lecture Notes in Computer Science(), vol 5108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70715-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70715-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70714-1

  • Online ISBN: 978-3-540-70715-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics