Abstract
Discovery of biomarkers using serum proteomic patterns is currently one of the most attractive interdisciplinary research areas in computational life science. This new proteomic approach has the clinical significance in being able to detect disease in its early stages and to develop new drugs for disease treatment and prevention. This paper introduces a novel pattern classification strategy for identifying protein biomarkers using mass spectrometry data of blood samples collected from patients in emergency department monitored for major adverse cardiac events within six months. We applied the theory of geostatistics and a kriging error matching scheme for identifying protein biomarkers that are able to provide an average classification rate superior to other current methods. The proposed strategy is very promising as a general computational bioinformatic model for proteomic-pattern based biomarker discovery.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Veenstra, T.D.: Global and targeted quantitative proteomics for biomarker discovery. J. Chromatography B 847, 3–11 (2007)
Schrader, M., Selle, H.: The process chain for peptidomic biomarker discovery. Disease Markers 22, 27–37 (2006)
Diamandis, E.P.: Mass Spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations. Mol. Cell Proteomics 3, 367–378 (2004)
Sauter, E., et al.: Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br. J. Cancer 86, 1440–1443 (2002)
Petricoin, E.F., et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002)
Conrads, T.P., Zhou, M., Petricoin III, E.F., Liotta, L., Veenstra, T.D.: Cancer diagnosis using proteomic patterns. Expert Rev. Mol. Diagn. 3, 411–420 (2003)
Ball, G., et al.: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18, 395–404 (2002)
Lilien, R.H., Farid, H., Donald, B.R.: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Computational Biology 10, 925–946 (2003)
Sorace, J.M., Zhan, M.: A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4, 24 (2003)
Wu, B., et al.: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19, 1636–1643 (2003)
Tibshirani, R., et al.: Sample classification from protein mass spectrometry, by peak probability contrasts. Bioinformatics 20, 3034–3044 (2004)
Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R.: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21, 1764–1775 (2005)
Yu, J.S., Ongarello, S., Fiedler, R., Chen, X.W., Toffolo, G., Cobelli, C., Trajanoski, Z.: Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21, 2200–2209 (2005)
Levner, I.: Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 6, 68 (2005)
Shin, H., Markey, M.K.: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. J. Biomedical Informatics 39, 227–248 (2006)
Anderle, M., Roy, S., Lin, H., Becker, C., Joho, K.: Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum. Bioinformatics 20, 3575–3582 (2004)
Salmi, J., Moulder, R., Filen, J.-J., Nevalainen, O.S., Nyman, T.A., Lahesmaa, R., Aittokallio, T.: Quality classification of tandem mass spectrometry data. Bioinformatics 22, 400–406 (2006)
Zhou, X., Wang, H., Wang, J., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Biomarker discovery for risk stratification of cardiovascular events using an improved genetic algorithm. In: Proc. IEEE/NLM Int. Symposium on Life Science and Multimodality, pp. 42–44 (2006)
Petricoin, E.F., Liotta, L.A.: Mass spectrometry-based diagnostics: The upcoming revolution in disease detection. Clinical Chemistry 49, 533–534 (2003)
Wulfkuhle, J.D., Liotta, L.A., Petricoin, E.F.: Proteomic applications for the early detection of cancer. Nature 3, 267–275 (2003)
Goodacre, S., Locker, T., Arnold, J., Angelini, K., Morris, F.: Which diagnostic tests are most useful in a chest pain unit protocol? BMC Emergency Medicine 5, 6 (2005)
Wu, A.: Markers for Early Detection of Cardiac Diseases. Scandinavian Journal of Clinical and Laboratory Investigation suppl. 240, 112–121 (2005)
Brennan, M.-L., Penn, M.S., Van Lente, N.V., Shishehbor, M.H., Aviles, R.J., Goormastic, M., Pepoy, M.L., McErlean, E.S., Topol, E.J., Nissen, S.E., Hazen, S.L.: Prognostic value of myeloperoxidase in patients with chest pain. The New England Journal of Medicine 13, 1595–1604 (2003)
Pham, T.D., Wang, H., Zhou, X., Beck, D., Brandl, M., Hoehn, G., Azok, J., Brennan, M.-L., Hazen, S.L., Li, K., Wong, S.T.C.: Computational prediction models for early detection of risk of cardiovascular events using mass spectrometry data. IEEE Trans. Information Technology in Biomedicine (in print, 2007), doi:10.1109/TITB.2007.908756
Matheron, G.: The theory of regionalized variables and its applications. Paris School of Mines Publication, Paris (1971)
Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)
Davis, J.C.: Statistics and Data Analysis in Geology. John Wiley & Sons, New York (2002)
Rabiner, L., Juang, B.-H.: Fundamentals of Speech Recognition. Prentice Hall, New Jersey (1993)
Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)
Petricoin, E.F., Rajapaske, V., Herman, E.H., et al.: Toxicoproteomics: Serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection. Toxicologic Pathology 32(suppl. 1), 1–9 (2004)
Ginsburg, G.S., McCarthy, J.J.: Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 19, 491–496 (2001)
Megason, S.G., Fraser, S.E.: Imaging in systems biology. Cell 130, 784–795 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pham, T.D. et al. (2008). Classification of Mass Spectrometry Based Protein Markers by Kriging Error Matching. In: Perner, P., Salvetti, O. (eds) Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. MDA 2008. Lecture Notes in Computer Science(), vol 5108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70715-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-70715-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70714-1
Online ISBN: 978-3-540-70715-8
eBook Packages: Computer ScienceComputer Science (R0)