Skip to main content

Abstract

Discovery of biomarkers using serum proteomic patterns is currently one of the most attractive interdisciplinary research areas in computational life science. This new proteomic approach has the clinical significance in being able to detect disease in its early stages and to develop new drugs for disease treatment and prevention. This paper introduces a novel pattern classification strategy for identifying protein biomarkers using mass spectrometry data of blood samples collected from patients in emergency department monitored for major adverse cardiac events within six months. We applied the theory of geostatistics and a kriging error matching scheme for identifying protein biomarkers that are able to provide an average classification rate superior to other current methods. The proposed strategy is very promising as a general computational bioinformatic model for proteomic-pattern based biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Veenstra, T.D.: Global and targeted quantitative proteomics for biomarker discovery. J. Chromatography B 847, 3–11 (2007)

    Article  Google Scholar 

  2. Schrader, M., Selle, H.: The process chain for peptidomic biomarker discovery. Disease Markers 22, 27–37 (2006)

    Google Scholar 

  3. Diamandis, E.P.: Mass Spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations. Mol. Cell Proteomics 3, 367–378 (2004)

    Article  Google Scholar 

  4. Sauter, E., et al.: Proteomic analysis of nipple aspirate fluid to detect biologic markers of breast cancer. Br. J. Cancer 86, 1440–1443 (2002)

    Article  Google Scholar 

  5. Petricoin, E.F., et al.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002)

    Article  Google Scholar 

  6. Conrads, T.P., Zhou, M., Petricoin III, E.F., Liotta, L., Veenstra, T.D.: Cancer diagnosis using proteomic patterns. Expert Rev. Mol. Diagn. 3, 411–420 (2003)

    Article  Google Scholar 

  7. Ball, G., et al.: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18, 395–404 (2002)

    Article  Google Scholar 

  8. Lilien, R.H., Farid, H., Donald, B.R.: Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Computational Biology 10, 925–946 (2003)

    Article  Google Scholar 

  9. Sorace, J.M., Zhan, M.: A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4, 24 (2003)

    Article  Google Scholar 

  10. Wu, B., et al.: Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19, 1636–1643 (2003)

    Article  Google Scholar 

  11. Tibshirani, R., et al.: Sample classification from protein mass spectrometry, by peak probability contrasts. Bioinformatics 20, 3034–3044 (2004)

    Article  Google Scholar 

  12. Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R.: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics 21, 1764–1775 (2005)

    Article  Google Scholar 

  13. Yu, J.S., Ongarello, S., Fiedler, R., Chen, X.W., Toffolo, G., Cobelli, C., Trajanoski, Z.: Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21, 2200–2209 (2005)

    Article  Google Scholar 

  14. Levner, I.: Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 6, 68 (2005)

    Article  Google Scholar 

  15. Shin, H., Markey, M.K.: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples. J. Biomedical Informatics 39, 227–248 (2006)

    Article  Google Scholar 

  16. Anderle, M., Roy, S., Lin, H., Becker, C., Joho, K.: Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum. Bioinformatics 20, 3575–3582 (2004)

    Article  Google Scholar 

  17. Salmi, J., Moulder, R., Filen, J.-J., Nevalainen, O.S., Nyman, T.A., Lahesmaa, R., Aittokallio, T.: Quality classification of tandem mass spectrometry data. Bioinformatics 22, 400–406 (2006)

    Article  Google Scholar 

  18. Zhou, X., Wang, H., Wang, J., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Biomarker discovery for risk stratification of cardiovascular events using an improved genetic algorithm. In: Proc. IEEE/NLM Int. Symposium on Life Science and Multimodality, pp. 42–44 (2006)

    Google Scholar 

  19. Petricoin, E.F., Liotta, L.A.: Mass spectrometry-based diagnostics: The upcoming revolution in disease detection. Clinical Chemistry 49, 533–534 (2003)

    Article  Google Scholar 

  20. Wulfkuhle, J.D., Liotta, L.A., Petricoin, E.F.: Proteomic applications for the early detection of cancer. Nature 3, 267–275 (2003)

    Google Scholar 

  21. Goodacre, S., Locker, T., Arnold, J., Angelini, K., Morris, F.: Which diagnostic tests are most useful in a chest pain unit protocol? BMC Emergency Medicine 5, 6 (2005)

    Article  Google Scholar 

  22. Wu, A.: Markers for Early Detection of Cardiac Diseases. Scandinavian Journal of Clinical and Laboratory Investigation suppl. 240, 112–121 (2005)

    Article  Google Scholar 

  23. Brennan, M.-L., Penn, M.S., Van Lente, N.V., Shishehbor, M.H., Aviles, R.J., Goormastic, M., Pepoy, M.L., McErlean, E.S., Topol, E.J., Nissen, S.E., Hazen, S.L.: Prognostic value of myeloperoxidase in patients with chest pain. The New England Journal of Medicine 13, 1595–1604 (2003)

    Article  Google Scholar 

  24. Pham, T.D., Wang, H., Zhou, X., Beck, D., Brandl, M., Hoehn, G., Azok, J., Brennan, M.-L., Hazen, S.L., Li, K., Wong, S.T.C.: Computational prediction models for early detection of risk of cardiovascular events using mass spectrometry data. IEEE Trans. Information Technology in Biomedicine (in print, 2007), doi:10.1109/TITB.2007.908756

    Google Scholar 

  25. Matheron, G.: The theory of regionalized variables and its applications. Paris School of Mines Publication, Paris (1971)

    Google Scholar 

  26. Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)

    Google Scholar 

  27. Davis, J.C.: Statistics and Data Analysis in Geology. John Wiley & Sons, New York (2002)

    Google Scholar 

  28. Rabiner, L., Juang, B.-H.: Fundamentals of Speech Recognition. Prentice Hall, New Jersey (1993)

    Google Scholar 

  29. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–207 (2003)

    Article  Google Scholar 

  30. Petricoin, E.F., Rajapaske, V., Herman, E.H., et al.: Toxicoproteomics: Serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection. Toxicologic Pathology 32(suppl. 1), 1–9 (2004)

    Google Scholar 

  31. Ginsburg, G.S., McCarthy, J.J.: Personalized medicine: revolutionizing drug discovery and patient care. Trends Biotechnol. 19, 491–496 (2001)

    Article  Google Scholar 

  32. Megason, S.G., Fraser, S.E.: Imaging in systems biology. Cell 130, 784–795 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner Ovidio Salvetti

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pham, T.D. et al. (2008). Classification of Mass Spectrometry Based Protein Markers by Kriging Error Matching. In: Perner, P., Salvetti, O. (eds) Advances in Mass Data Analysis of Images and Signals in Medicine, Biotechnology, Chemistry and Food Industry. MDA 2008. Lecture Notes in Computer Science(), vol 5108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70715-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70715-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70714-1

  • Online ISBN: 978-3-540-70715-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics