
Modelling Medical Time Series Using Grammar-Guided 
Genetic Programming 

Fernando Alonso, Loic Martinez, Aurora Perez, Agustin Santamaria, 
and Juan Pedro Valente 

Facultad de Informatica. Universidad Politecnica de Madrid. Campus de Montegancedo. 
28660 Boadilla del Monte. Madrid. Spain 

Abstract. The analysis of time series is extremely important in the field of 
medicine, because this is the format of many medical data types. Most of the 
approaches that address this problem are based on numerical algorithms that 
calculate distances, clusters, reference models, etc. However, a symbolic rather 
than numerical analysis is sometimes needed to search for the characteristics of 
time series. Symbolic information helps users to efficiently analyse and com­
pare time series in the same or in a similar way as a domain expert would. This 
paper describes the definition of the symbolic domain, the process of converting 
numerical into symbolic time series and a distance for comparing symbolic 
temporal sequences. Then, the paper focuses on a method to create the symbolic 
reference model for a certain population using grammar-guided genetic pro­
gramming. The work is applied to the isokinetics domain within an application 
called 14. 

Keywords: Time series characterization, isokinetics, symbolic distance, infor­
mation extraction, reference model, text mining. 

1 Introduction 

An important domain for the application of time series analysis in the medical field is 
physiotherapy and, more specifically, muscle function assessment based on isokinet­
ics data. 

Isokinetics data is retrieved by an isokinetics machine (Fig. la), on which patients 
perform exercises using any of their joints (knee, elbow, ankle, etc.) at maximum 
strength. To assure that the patient exercises at constant speed, the machine puts up 
the required resistance to the strength the patient exerts. As our patients are chiefly 
sportspeople, we decided to focus on knee exercises (extensions and flexions) since 
most of the data and knowledge gathered by sports physicians is related to this joint. 
The data takes the form of a strength curve with additional information on the angle 
of the knee (Fig. lb). The positive values of the curve represent extensions (knee an­
gle from 90° to 0°) and the negative values represent flexions (angle from 0° to 90°). 



(a) (b) 

Fig. 1. Isokinetics machine (a) and collected data (b) 

After observing experts at work, we found that they apply their knowledge and ex­
pertise to focus on certain sections of the isokinetics curve and ignore others. There­
fore, we looked for a way of bringing this machine's output closer to the information 
sports physicians deal with in their routine work, since they demand a representation 
related to their own way of thinking and operating. Hence, symbolic series have been 
used as an option that more closely resembles an expert's conceptual mechanisms. 

To do this, our research focused primarily on the design of the symbols extraction 
method that translates numerical time series into symbolic temporal series. Then, we 
designed an isokinetics symbolic distance measure to indicate how similar two sym­
bolic time series are This way, symbolic sequences can be automatically com­
pared to detect similarities, class patients, etc. Finally, we applied data mining (DM) 
techniques based on grammar-guided genetic programming (GGGP) to create refer­
ence models useful for defining population groups. 

Section 2 of the paper gives an overview of the 14 (Intelligent Interpretation of 
Isokinetics Information) system, of which this research is part. Section 3 describes the 
symbol extraction method. Section 4 explains the symbolic distance measure. Section 5 
describes the use of genetic algorithms to create symbolic models from symbolic time 
sequences. Finally, section 6 presents the research results and section 7 outlines some 
conclusions, and mentions future lines of research. 

2 14 System Overview 

The 14 System provides sports physicians with a set of tools to analyze patient 
strength data output by an isokinetics machine. It is composed of a data preparation 
subsystem, a Knowledge-Based System (KBS), a numerical Knowledge Discovery in 
Databases (nKDD) subsystem, a symbolic Knowledge Discovery in Databases 
(sKDD) subsystem (objective of this paper), and a Visualization module (Fig. 2). The 
data preparation subsystem manages the tasks of translating, formatting, cleaning and 
pre-processing the time series obtained from the isokinetics data. These tasks use ex­
pert knowledge and generate a database in which data is homogeneous, consistent and 
noise free. The KBS module analyses this data to make it easier for novice users and 
also blind physiotherapists to interpret the isokinetics curves. The nKDD performs 



Cleaning and 
Pre-processing 

Visualization 
Exercises 
Injury/reference models 
Comparisons 

Fig. 2.14 System Overview 

data mining on the numerical isokinetics data to define reference models for 
patient groups and to identify injury patterns. Finally, the Visualization module dis­
plays exercises, injury patterns, reference models, etc. 

Many of these functionalities are used on a daily basis by specialized physicians to 
assess the potential of their patients (mostly top-competition sportsmen and women), 
diagnose injuries and analyse what progress patients have made in injury recovery. 
The system is reliable and outputs equivalent results to what an expert would. How­
ever, it has failed to gain experts' total confidence. This is because the information the 
expert receives from the 14 system does not highlight the significant aspects of the 
isokinetics series in a language that they can easily understand. This has led to the 
need to build a symbolic Knowledge Discovery in Databases subsystem (sKDD) to 
solve this problem. The sKDD subsystem contains: a Symbolic Extraction Method 
(SEM) to extract the symbolic sequence from a numerical series; a Symbolic Isokinet­
ics Distance (SID) module to get a similarity measure between two symbolic isokinet­
ics sequences; and a SYmbolic Reference MOdels (SYRMO) method to create a ref­
erence model from a set of isokinetics exercises. The sKDD subsystem should 
produce results that are equally reliable as the nKDD subsystem, and it should also 
give a reasonable explanation of the results in terms of the domain under study. This 
paper focuses on the design of the sKDD. 

3 Conversion of Numerical into Symbolic Time Sequences 

To be able to develop a symbolic comparison method it is necessary to translate the 
numerical time sequences output by the isokinetics machine into symbolic time 
sequences. The first option was to use SAX (Symbolic Aggregate approximation) 



to do this translation. This method is able to reduce the temporal sequence 
dimensionality and assures that the symbolic distance used is less than or equal to dis­
tance between the original two sequences. However, the symbols output automatically 
using the Piecewise Aggregate Approximation (PAA) and the Gaussian distribution 
do not have expert semantic content, that is, they would not be equivalent to the sym­
bols that the expert identifies when analysing the sequence. To do this it is necessary 
[1] to find out what symbol alphabet the isokinetics expert uses to analyse the tempo­
ral sequences. 

After the first few interviews, the expert stated that there were two visually distin­
guishable regions in every exercise: knee extension and flexion. Both had a similar 
morphology (the shape shown in Fig. 3), from which we were able to identify the fol­
lowing symbols: 

• Ascent: part where the patient gradually increases the strength applied. 
• Descent: part where the patient gradually decreases the strength applied. 
• Peak: a prominent part in any part of the sequence. 
• Trough: a depression in any part of the sequence. 
• Curvature: the upper section of a region. 
• Transition: the changeover from extension to flexion (or vice versa). 

Fig. 3. Symbols of an isokinetics curve 

Each isokinetics symbol can have different shapes, that is, different types that are 
taken into account when translating a numerical temporal sequence into a symbolic 
series. The types were also elicited from the expert as he analyzed test cases that con­
stituted a significant sample of the whole database. As the expert separated an exten­
sion from a flexion, each symbol had to be labelled with its type and also with the 
keyword "Ext" or "Flex". The set of symbols, types and regions form an alphabet 
called ISA (Isokinetics Symbols Alphabet), shown in Table 1. 

This ISA is used to get symbolic sequences from numerical temporal sequences. 
The Symbolic Extraction Method (SEM), shown in Fig. 4, was designed to make this 
transformation. First, a pre-prepared numerical sequence is put through the domain-
independent module (DIM), which outputs a set of domain independent features, that 
is, peaks and troughs. Both the features output by the DIM (peaks and troughs) and 
the actual numerical sequence data will be used as input for the domain-dependent 



Table 1. Isokinetics Symbols Alphabet 

Region 

FLEX 

Symbol 

Transition 

Types 
Ascent 
Descent 
Trough 
Peak 

Curvature 

Sharp 
Sharp 
Big 
Big 

Sharp Flat 

Gentle 
Gentle 
Small 
Small 
Irregular 

; H / N / 

Numeric 
Sequence 

Output 
Domain-

Independent 
Features 

Doma in 
Independent 
Module (D IM 

Peaks & 
Troughs 

Output 
Domain-

Dependent 
Features 

Filter 

Domain 
Dependent 

Module (DDM 

Assign Types 
and Regions 
to Symbols 

) 

Ext/1 scent. Sharp 
E xt. Curva ture. S ha r p 
Ext. Descent. S ha rp 
Ext.Transttton 
Flex-4scent.S harp 
Flex .Curvature .Sharp 
Flex. Cescent. Sharp 
Flex Transition 
Ext/1 scent. Sharp 

Symbolic 
sequence 

Fig. 4. Architecture of SEM 

module (DDM). The DDM outputs all the domain-dependent data of the sequence. 
This module is divided into three submodules: 

• Output of domain-dependent features. The aim is to get all the symbols that 
characterize the given numerical sequence. This module selects the relevant 
peaks and troughs and identifies the ascents, descents and curvatures. 

• Filter. The set of symbols output by the above submodule is put through a 
filtering stage. Apart from other filtering processes, this filter checks that 
there are no consecutive symbols that are equal. For example, it makes no 
sense to have two ascents one after the other, because they would really be 
just one ascent. 

• Assign types to symbols. The goal of this submodule is to label each symbol 
with a type. This process is based on a set of rules that use a number of 
thresholds to define the symbol type in each case. 

A graphical interface has been designed to easily work with the SEM (see Fig. 5). 
An exercise is selected as input to the SEM. The original temporal sequence of the 
exercise is displayed at the top of the interface. The central part displays the transla­
tion of the temporal sequence into symbols, illustrating all the SEM stages. The first 
stage outputs the domain-independent features, as is shown on the left under the head­
ing "FEATURES". This list contains all the information related to each peak/trough 
and is formatted as follows: 

<feature>. Grad:<gradient_value> Start:<initial_value> 
End:<final_value> Ampl:<amplitude_value> 
Dur:<duration_value> <value_of_the_point> 

The next stage of the method is to output the domain dependent symbols, which 
are shown under the heading "DOMAIN-DEPENDENT SYMBOLS". The threshold 



parameters that are used to output these symbols are listed under "FILTERING 
PARAMETERS". 

The result of the last stage of the SEM is set out on the right side of the interface, 
under the heading "DOMAIN-DEPENDENT TYPED SYMBOLS". It is the type 
characterisation of each symbol. The threshold parameters used are shown as 
"TYPOLOGY PARAMETERS". 

The curve reconstructed from the symbols is shown at the bottom. 

I •• .™-~ ^ i 

Fig. 5. Symbolic representation interface 

As stated by the expert, SEM is an important aid for physicians in writing reports, 
examining the evolution of an athlete's joint, diagnosing injuries or controlling treat­
ment after a medical diagnosis. 

4 Comparison of Isokinetics Symbolic Sequences 

Our next goal is to find a similarity measure that can be used to compare symbolic 
isokinetics sequences and perform data mining tasks. 

After a thorough study to select the best similarity measure for the medical field of 
isokinetics, we reached the conclusion that a new measure needed to be designed. 
This measure is based on edit distances, which are the best fit for the isokinetics do­
main, as they take into account the order of the components and the morphology of 
the sequence. However, none of the distances we examined exactly fits our problem, 
because the symbols used in the isokinetics domain also have an associated type that 
needs to be taken into account to calculate the distances. 

This led us to propose a variation on the Needleman-Wunch distance The sug­
gested distance, the Symbolic Isokinetics Distance (SID), allocates a variable cost to 
the insert and delete operations depending on the symbol and symbol type to be 



inserted or deleted. It also allocates a variable cost to the substitute operations 
depending on the symbol and type that are substituted. 

Fig. 6 shows the three steps required to calculate the SID of two symbolic se­
quences: calculate the distance between each pair of subsequences, normalize these 
distances and calculate the arithmetic mean to get the total distance. 

The researched isokinetics sequences are composed of three repetitions, and each 
repetition is composed of an extension and a flexion. Therefore, an isokinetics se­
quence contains six parts, each of which is represented by the notation shown in (1). 

<ZonexRepetitionxSequence> (1) 

where <Zone> can take the value E (for Extension) or F (for Flexion), <Repetition> 
can take the value R1, R2 or R3 depending on whether it is repetition 1, 2 or 3, 
and<Sequence> can take the value S1 or S2 depending on the sequence 1 or 2. 

/" \,/'"'" 
SI 

S2 

ER'S FR'S : ER2S FR2S" ER3S: FR3S: 

ER'S2 [ F R ' S 2 J E R 2 S 2 | ' FR 2 S 2 | ' ER 3 S 2 | FR3S2 ] 

i r r r r r 
1. Calculate edit distances 

Edit Distances | EDX | ED2 | ED3 | ED4 | ED5 | ED6 | 

2. Normalize | 

i I I I I I 
Normalized , 

Edit Distances 

3. Calculate arithmetic mean 

Symbolic Isokinetics 
Distance 

Fig. 6. Computing the Symbolic Isokinetics Distance 

The SID between two series, SI, of length n, and S2, of length m, is calculated by 
building a matrix of mxn elements. This matrix includes the accumulated costs of the 
insert, delete or substitute operations, always calculating the best alignment between 
the two symbolic sequences for comparison. This prevents trapping in local minima. 
The value of each matrix element is calculated using equation (2): element (i,j) indi­
cates the SID between SI' and S2' (the subsequences —prefixes— of SI and S2 end­
ing in elements j and i, respectively); element (m,n) indicates the final SID between 
S1 and S2. This way, the SID can be used to get the least costly edit command se­
quence (delete, insert and substitute) for transforming Si into S2. 

D(i, j) = min 

D(i-lj-l) if s, = tj //copy 

D(i — 1, j — 1) + SubstituteGapCost if si != tj //substitute 

D(i — 1,7') + InsertGapCost //insert 

D(i, j — 1) + DeleteGapCost //delete 

(2) 

Due partly to qualitative aspects (each symbol has a different structural weight) 
and partly to quantitative issues, not all the operations or all the symbols can be 



allocated an identical gapcost in the isokinetics field. For example, curvatures are 
symbols that are part of any repetition, whereas peaks and troughs are circumstantial 
symbols, usually induced by minor patient injuries and, therefore, may or may not ap­
pear. Additionally, the presence of a large peak cannot be considered the same as 
there being a small peak. Therefore, each symbol has to be allocated a different 
weight, and a distinction has to be made depending on the symbol type. 

We had to define both the cost of substituting one symbol type by another and the 
cost of inserting or deleting a particular symbol type. This was done with the help of 
an isokinetics expert. The insert and delete costs were unified to assure that the com­
parison of two series is symmetric. 

For the substitute cost, several possibilities were weighed up. Initially, we designed 
a tabular structure, where the table rows and columns included all the symbol types, 
and the cell (i,j) represented the cost of substituting the symbol type i by the symbol 
type j . However, this table was hard work for the expert to build. For instance, 
(nxm)2/2-(nxm) values are needed if the number of symbols is n and the mean number 
of types per symbol is m (the table is symmetric and the cost is 0 along the main di­
agonal). Additionally, this table is not very open to the entry of any change in the 
symbols alphabet, as the expert would have to put in a lot of work to reformulate the 
table to accommodate the changes. 

To overcome these two problems, we opted for a graph structure, where the princi­
pal cost of substituting two symbols is determined mainly by the symbol, whereas the 
symbol type serves to further specify that cost. Fig. 7b shows this substitution graph. 
The expert will have to define n2/2-n + nxm values, which is clearly fewer than for the 
table. Additionally, this structure is much more open to the entry of any changes in 
the symbols alphabet, and it is also more self-explanatory for the expert. 

Fig. 7. Insertion/Deletion and Substitution Graph 



For the sake of coherency, we have used a similar representation for the insert and 
delete costs (Fig. 7a), although, in this case, there is no difference in the number of 
values that the expert has to define for the graph and for the table. 

To make things easier for the expert, we took the graphical representation for each 
symbol type and defined some initial costs by comparing the area each symbol cov­
ered. These initial values were presented to the expert as a starting point. 

The gapcosts used in (2) are plotted in the graphs shown in Fig. 7. It is clear from 
these graphs that there is a cost per symbol to which a cost per type associated with 
each symbol is added. 

The normalization process is applied to the distances between each of the six compo­
nents of the two sequences for comparison (these distances are denoted EDX in Fig. 6, 
where x is the number of the component that has been compared). Then all the dis­
tances are defined in the interval [0, 1]. The normalization is based on dividing the 
obtained distance value by what would have been output in the worst case. In our do­
main, as all the sequences have six curvatures (two for each repetition), the worst case 
would be to have substitute operations for the curvatures and substitute operations for 
ascents or descent with the worst gapcost. 

Once the normalized distances have been obtained for each component, their 
arithmetic mean is calculated. This outputs the symbolic isokinetics distance between 
the two compared sequences. This is useful for comparing symbolic time series with 
reference models to detect injuries or class a sportsperson in a give population group. 

5 Using GGGP to Create Reference Models 

As part of the research, a method, called S YRMO (S Ymbolic Reference MOdels), has 
been defined to create symbolic reference models from symbolic temporal sequences. 
A symbolic reference model will be composed of a repetition, that is, an extension 
and flexion. To do this, we weighed up several alternatives. 

The first possibility was to formulate a brute-force algorithm that generated all the 
possible symbol combinations to form a repetition that would be used as a trial model. 
Each trial model would be compared with what is currently the best model using the 
mean of all the symbolic distances of the model with all the existing repetitions. If the 
mean of the trial model is less than the mean of the existing model, then the model is 
updated. Evidently, this alternative is not feasible because, apart from producing a 
combinatorial explosion of symbols, there is no way of generating optimal trial solu­
tions to form a trial model. Trial solutions are generated completely at random, and 
better and worse trial models are likely to appear in each algorithm run. 

Then we weighed up the possibility of using the brute-force algorithm with an im­
proved trial model generation mechanism. This mechanism used the SID algorithm to 
find the absolute alignments between the symbolic sequences from which the model 
was to be generated. Our research confirmed that this algorithm was hard to general­
ize for n symbolic sequences and did not assure the correct generation of trial models. 

Finally, GGGP was applied to create reference models. GGGP is an extension 
of genetic programming. Genetic programming (GP) is a means of automatically gen­
erating computer programs by employing operations inspired by biological evolution 
[6]. First, the initial population is generated, and then genetic operators, such as 



(Replacement Method) 

J Termination L 
" Convergence Criterbn? f 

Evaluate Fitness of Each 
Individual in Population 

lndividuals=0 

i 
Individ uals=N? 

i 
Select Individuals 

(Selection Operator) 

i 
Perform Crossover 

(Crossover Operator) * 
Perform Mutation 

(Mutation Operator) 

E"J I 

Fig. 8. Genetic Programming Algorithm 

selection, crossover, mutation and replacement, are executed to breed a population of 
trial solutions that improves over time [7]. 

In this case, the initial population is composed of a selected set of symbolic se­
quences on which the set of genetic operators should be applied. Fig. 8 shows the ge­
netic algorithm's steps. As the process advances, the individuals, in this case symbolic 
temporal sequences, are selected, crossed and mutated generation by generation to 
improve a fitness function, applying a generational replacement method. The algo­
rithm ends when the convergence criteria are met. The result is an individual, the best 
individual in the last population, which is the model of the initial population. 

In GP all algorithms start with the random generation of the initial population, 
which is composed of individuals that represent possible solutions to the search prob­
lem at hand. The main disadvantage of this process is that, being completely random, 
it can cause the generation of invalid individuals: sequences that are too large or that 
do not represent possible solutions to the problem. One way to overcome this draw­
back is to keep on generating individuals, discarding the invalid ones, until the initial 
population is complete. However, the computational cost of this approach is ex­
tremely high for problems requiring large population sizes The goal of grammar-
guided genetic programming is to solve the closure problem This problem 
involves always generating valid individuals (points or possible solutions that belong 
to the search space), which directly affects the initial population-generating algorithm. 
To solve the closure problem, GGGP employs a context-free grammar (CFG) that es­
tablishes a formal definition of the syntactical restrictions of the problem to be solved 
and its possible solutions. Each of the individuals handled by GGGP is a derivation 
tree that generates and represents a sentence (solution) belonging to the language de­
fined by the CFG 

In this case, the isokinetics language is defined by the IG (Isokinetics Grammar) 
CFG that uses the ISA alphabet, shown in (3). 

Once the IG grammar had been defined, we went on to determine the fitness func­
tion according to which the individuals of the population were to evolve. After run­
ning several experiments, the chosen fitness function was the mean of an individual's 
symbolic distances from 80% of its nearest neighbours in the initial population. This 
individual is the reference model that is representative of the initial population. 



Then we went on to select the best set of genetic operators and convergence criteria 
for the GGGP algorithm to converge as fast as possible. To do this, we had to run ex­
periments on different genetic operators with different convergence criteria to find out 
how the algorithm converged and what percentage of fitness the fitness function 
achieved. 

IG = (£N, XT, Exercise, P) 

XN = {Exercise, Ext, Flex, Climb, Fall, preAsc, preDesc, prePeak, preTrough, 
postAsc, postDesc, postPeak, postTrough, Curvature, Asc, Desc, Peak, 
Trough} 

XT = {Curv-sharp, Curv-flat, Curv-irregular, Asc-sharp, Asc-gentle, Desc-
sharp, Desc-gentle, Peak-big, Peak-small, Trough-big, Trough-small, Tran­
sition} 

P = {Exercise —> Ext Transition Flex 
Ext —> Climb Curvature Fall 
Flex —> Climb Curvature Fall 
Climb —> presAsc Asc postAsc I preAsc Asc I Asc postAsc I Asc 
Fall —> preDesc Desc postDesc I preDesc Desc I Desc postDesc I Desc 
preaAsc —> preDesc Desc I prePeak Peak I preTrough Trough I Desc 

I Peak I Trough 
preDesc —> preAsc Asc I prePeak Peak I preTrough Trough I Asc I Peak 

I Trough (3) 
prePeak —> preAsc Asc I preDesc Desc I preTrough Trough I Asc I Desc 

I Trough 
preTrough —> preAsc Asc I preDesc Desc I prePeak Peak I Asc I Desc 

I Peak 
postAsc—> Desc postDesc I Peak postPeak I Trough postTrough I Desc 

I Peak I Trough 
postDesc —>Asc postAsc I Peak postPeak I Trough postTrough I Asc 

I Peak I Trough 
postPeak —> Asc postAsc I Desc postDesc I Trough postTrough I Asc 

I Desc I Trough 
postTrough —> Asc postAsc I Desc postDesc I Peak postPeak I Asc 

I Desc I Peak 
Curvature —> Curv-sharp I Curv-flat I Curv-irregular 
Asc —> Asc-sharp I Asc-gentle 
Desc —> Desc-sharp I Desc-gentle 
Peak —> Peak-big I Peak-small 
Trough —> Trough-big I Trough-small} 

Table 2 shows the relationship of the genetic operators analysed to determine 
which ones will generate valid symbolic models. Any operator should output valid in­
dividuals, that is, individuals that comply with the grammar defined in (3). Therefore, 



Table 2. Genetic Operators 

Operator 
IlE£ 

Operator 
Name 

Analysis 

Tournament [ 9] 
Roulette [10] 

Scaling [11] 

Mutation 

Generational [12] 

Koza [13] 
SCPC [14] 

Fair [15, 16] 

Whigham [17] 

GBC [18] 

Standard [23] 

GBM [18] 

After analysing the results of the experiments, these selection op­
erators were considered not to be applicable because they have to 
create a huge number of generations to achieve the required con­
vergence of the population. The tournament selection operator is 
the least recommendable in this case, with 500 times more gen­
erations than generational selection operator, if it converges. The 
next least recommendable operator for this domain would be rou­
lette selection, with 21 times more generations, followed by the 
scaling selection operator, which, although it comes fairly close to 
the generational selection operator, will still create 4% more gen-
erations. 
In this case, instead of being formed at random, the first genera­
tion is composed of the population that is to produce the symbolic 
reference model. Therefore, the generational selection operator is 
the one that behaves best with respect to the number of genera­
tions produced, as the whole population is selected for crossover. 
This way, all the individuals have a chance of passing on their 
genetic load to future offspring. 
These crossover operators were not applied, because, as they are 
not based on a CFG, they can generate invalid individuals, and 
therefore the resulting symbolic reference model would not be a 
correct reference model. 
Both crossover operators output valid individuals, as they comply 
with the CFG defined in the GGGP algorithm. The Whigham 
crossover operator is still now in use, because of its good per­
formance [19, 20, 21]. However, in our experiments, the GBC 
operator has a 3% better convergence rate, as the GBC prevents 
the disproportionate growth of the size of the trees representing 
the individuals and takes advantage of the ambiguous grammar 
property. This property means that there is more than one differ­
ent derivation tree for the same word, the key weakness of the 
Whigham operator [22], 
The Standard mutation operator is usually employed by GGGP. It 
substitutes the subtree whose root is the mutation node for another 
subtree whose symbol in the root node coincides with the one in 
the mutation node. This constraint on matching non-terminal 
symbols has a negative impact on the exploration capacity of the 
operator when an ambiguous CFG is used. GBM (Grammar 
Based Mutation) overcomes this weakness. 

Replacement SSGA 

De Jong applied the concept of generational replacement rate with 
the aim of implementing a controlled overlap between parents and 
offspring [12]. In this paper, a proportion ttg of the population is 
selected for crossover. The resulting offspring will replace the 
worst-adapted members of the earlier population. These types of 
genetic algorithms, where only a few individuals are replaced, are 
known as SSGA (steady-state replacement genetic algorithms). 
This is used in the experiments run to replace the individuals of 
previous population. 

the only operators that we were unable to apply because they could generate invalid 
individuals were: Koza, SCPC and Fair crossover operators. 

Having eliminated these operators, we went on to experiment with the others to se­
lect the ones that led to the fastest convergence to the best possible model. As a result 



of the experiments described in Table 2, the best combination of operators was: the 
Generational selection operator, the GBC crossover operator, the GBM mutation op­
erator and the SSGA replacement operator. 

6 Results and Evaluation 

SYRMO was evaluated in a two-stage experimentation process. In the first stage, 500 
experimental reference models were created with the aim of tuning the algorithm pa­
rameters and determining what genetic operators were best, as discussed above. 

The goal of the second stage of experimentation was to evaluate the results of 
SYRMO. To evaluate these results, the numerical method now in use was used to 
generate 20 reference models. The reference models were created from populations of 
football, basketball and handball players. Then SYRMO was used to create the sym­
bolic reference models from the same populations as above. When the expert in isoki­
netics analysed both the symbolic and numerical references models, she found that the 
two were very alike. In most cases, there is a perfect match between the numerical 
and symbolic reference models, as illustrated in Fig. 9. This figure shows a numerical 
reference model, represented by the extension and flexion curve, and the symbolic 
reference model, shown as dashed lines, which is wholly equivalent to the numerical 
reference model. However, some differences, which were, from the viewpoint of the 
isokinetics expert, not significant, were found in 5% of the cases. 

Symbolic Reference Model Numerical Reference Model 

Ext.Ascent.Sharp 

Ext.Peak. Big 

Ext.Trough. Big 

Ext.Curvature. Irregular 

Ext.Descent.Sharp 

Flex. Ascent.Sharp 

Flex.Peak.Small 

FlexTrough.Small 

Flex. Ascent.Sharp 

Flex. Curvature. Sharp 

Flex.Descent.Sharp 

FlexTrough.Small 

Flex. Ascent.Gentle 

FlexPeakSmall 

Flex.Descent.Sharp 

Flex. Descent.Sharp 
Flex.Ascent .Sharp * v 

\ Flex.Peak.Small 
\ \ Flex.Trough.Small 

Flex. Trough.Small 

\ \ FlexAscent.Gentle 

~ \ i Flex.Descent.Sharp 

\ \ \ Flex. Curvarture. Sharp Flex.Peak.Small 

Ext.Curvature. Irregular i FlexAscent.Sharp 

Ext.Ascent.Sharp Ext.Trough.Big Ext.Descent.Sharp 

Fig. 9. Numerical Reference Model versus Symbolic Reference Model 

7 Conclusions 

This paper has presented ongoing work on the development of a comprehensive sys­
tem to deal with isokinetics data, including symbolic data analysis. 

Our earlier experience with numerical methods has been very positive, but experts 
did not have enough confidence in the system, because the information they received 



did not highlight the relevant aspects of the isokinetics series in a language they found 
easy to understand. This is the reason that led us to introduce symbolic methods, 
which use the same language as our experts. 

This paper has focused on the 14 project's sKDD subsystem. sKDD transforms the 
original numerical temporal sequences into symbolic sequences, defines a symbolic 
isokinetics distance (SID) that can be used to compare symbolic isokinetics se­
quences, and provides a method, SYRMO, for creating symbolic isokinetics reference 
models using grammar-guided genetic programming. 

The evaluation has shown that the numerical and symbolic reference models gen­
erated from isokinetics tests on top-competition sportsmen and women are, in the ex­
pert's opinion, similar. In view of these encouraging results, we are continuing our re­
search in the field of symbolic data analysis to build new functionalities into 14 and 
add symbolic injury characterization to the sKDD subsystem. 

References 

Alonso, F., Martinez, L., Perez, A., Santamaria, A., Valente, J.P.: Symbol Extraction 
Method and Symbolic Distance for Analysing Medical Time Series. In: Maglaveras, N., 
Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS (LNBI), vol. 4345, 
pp. 311-322. Springer, Heidelberg (2006) 
Alonso, F., Valente, J.P., Martinez, L., Montes, C : Discovering Patterns and Reference 
Models in the Medical Domain of Isokinetics. In: Zurada, I.M. (ed.) New Generations of 
Data Mining Applications. IEEE Press/Wiley (2005) 
Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding Motifs in Time Series. In: Proceedings of 
the 2nd Workshop on Temporal Data Mining. At the 8th ACM SIGKDD Int'l Conference 
on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 53-68 (2002) 
Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with 
implications for streaming algorithms. In: Proceedings of 8th ACM SIGMOD workshop 
on Research issues in data mining and knowledge discovery, San Diego, California, pp. 2-
11(2003) 
Needleman, S.B., Wunsch, CD.: A general method applicable to the search for similarities 
in the amino acid sequences of two proteins. J. Mol. Biol. 48, 443^-53 (1970) 
Luke, S.: Two Fast Tree-Creation Algorithms for Genetic Programming. IEEE Trans, on 
Evolutionary Computation 4(3), 274-283 (2000) 
Koza, J.R., Keane, M.A., Streeter, M.J., et al.: Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Publishers, Norwell (2005) 
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, London (2001) 
Brindle, A.: Genetic Algorithms for Function Optimization. PhD Thesis, University of Al­
berta (1991) 
Baker, J.E.: Reducing Bias and Inefficiency in the Selection Algorithm. In: Proceedings of 
the 1st International Conference on Genetic Algorithms, pp. 101-111 (1987) 
Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. Harper and Row, 
New York (1970) 
De Jong, K.A.: Analysis of Behaviour of a class of Genetic Adaptive Systems. PhD The­
sis, University of Michigan (1975) 
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natu­
ral Selection. MIT Press, Cambridge (1992) 



D'haesler, P.: Context Preserving Crossover in Genetic Programming. In: Proceedings of 
the 1994 IEEE World Congress on Computational Intelligence, Orlando, Florida, USA, 
vol. (1), pp. 379^07(1994) 
Langdon, W.B.: Size Fair and Homologous Tree Genetic Programming Crossovers. In: 
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 1999, pp. 
1092-1097. Morgan Kaufmann, San Francisco (1999) 
Crawford-Marks, R., Spector, L.: Size control via Size Fair Genetic Operators in the 
PushGP Genetic Programming System. In: Proceedings of the Genetic and Evolutionary 
Computation Conference, New York, USA, pp. 733-739 (2002) 
Whigham, P.A.: Grammatically-Based Genetic Programming. In: Rosea, J.P. (ed.) Pro­
ceedings of the Workshop on Genetic Programming: From Theory to Real-World Applica­
tions, Tahoe City, California, USA, pp. 33^11 (1995) 
Couchet, J., Manrique, D., Rios, J., Rodrfguez-Paton, A.: Crossover and mutation opera­
tors for grammar-guided genetic programming. Soft Computing - A Fusion of Founda­
tions, Methodologies and Applications 11(10), 943-955 (2007) 
Grosman, B., Lewin, D.R.: Adaptive genetic programming for steady-state process model­
ling. Comput. Chem. Eng. 28, 2779-2790 (2004) 
Hussain, T.S.: Attribute grammar encoding of the structure and behavior of artificial neural 
networks. PhD Thesis, Queen's University, Kingston, Ontario (2003) 
Rodrigues, E., Pozo, A.: Grammar-guided genetic programming and automatically defined 
functions. In: Proceedings of the 16th Brazilian symposium on artificial intelligence, Bra­
zil, pp. 324-333 (2002) 
Hoai, N.X., McKay, R.I.: Is ambiguity useful or problematic for grammar guided genetic 
programming? A case of study. In: Proceedings of the 4th Asia-Pacific conference on 
simulated evolution and learning, Singapore, pp. 449^-53 (2002) 
Wong, M.L., Leung, K.S.: Data mining using grammar based genetic programming and 
applications. Kluwer, Norwell (2002) 


	INVE_MEM_2008_55935blanco.pdf



