Abstract
Multi-core computers give the opportunity to solve high-performance applications more efficiently by using parallel computing. In this way, it is possible to achieve the same results in less time compared to the non-parallel version. Since computers continue to grow on the number of cores, we need to make our parallel applications scalable. This paper shows how a Genetic Algorithm (GA) in a non-parallel version takes long time to solve an optimization problem; in comparison, using multi-core parallel computing the processing time can be reduced significantly as the number of cores grows. The tests were made on a quad-core computer; a comparison of the speeding up in relation to the number of cores is shown.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alba, E., Luna, F., Nebro, A.J.: Advances in Parallel Heterogeneous Genetic Algorithms for Continuous Optimization. International Journal of Applied Mathematics and Computer Science 14, 317–333 (2004)
Domeika, M., Kane, L.: Optimization Techniques for Intel Multi-Core Processors, http://softwarecommunity.intel.com/articles/eng/2674.htm
Chai, L., Gao, Q., Panda, D.K.: Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core System. In: The 7th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007) (2007)
Dongarra, J., et al.: Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, San Francisco (2003)
Burger, T.W.: Intel Multi-Core Processors: Quick Reference Guide, http://cache-www.intel.com/cd/00/00/20/57/205707_205707.pdf
Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problem. Springer, Heidelberg (2004)
Snir, M., et al.: MPI: The complete Reference. MIT Press, Cambridge (1996)
Sahab, M.G., Toropov, V.V., Ashour, A.F.: A Hybrid Genetic Algorithm For Structural Optimization Problems. Asian journal of civil Engineering, 121–143 (2004)
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley-Interscience, Chichester (2004)
Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publisher, Dordrecht (2001)
Distributed Computing Toolbox User’s Guide, Mathworks (2007)
Edelman, A.: Applied Parallel Computing (2004)
Nowostakski, M., Poli, R.: Parallel Genetic Algorithm Taxonomy
Hwang, K., Xu, Z.: Scalable Parallel Computing. McGraw-Hill, New York (1998)
Akhter, S., Roberts, J.: Multi-Core Programming. In: Increasing Performance through Software Multi-Threading. Intel Press (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Serrano, R., Tapia, J., Montiel, O., Sepúlveda, R., Melin, P. (2008). High Performance Parallel Programming of a GA Using Multi-core Technology. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70812-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-70812-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70811-7
Online ISBN: 978-3-540-70812-4
eBook Packages: EngineeringEngineering (R0)