Abstract
Parallelism in hardware and software is necessary to solve aplications that require high processing. Parallel computers provide great amounts of computing power, the multi-core technology will be designed to increase performance and minimize heat. This paper shows the performance improvements with multi-core architecture and parallel programming applied in a Multiple Adaptive Neuro-Fuzzy Inference System, obtaining with this a significantly reduction of the processing time. In addition, it shows the comparison between the non-parallel and parallel implementation and the results obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. In: An Evolutionary Approach for Neural Networks and Fuzzy Systems. Springer, Heidelberg (2005)
Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Sof Computing. In: A computational Approach to learning and Machine Intelligence. Prentice-Hall, Englewood Cliffs (1997)
Akhter, S., Roberts, J.: Multi-Core Programming. In: Increasing Performance Through Software Multi-threading. Intel Press (2006)
Burger, T.W.: Intel Multi-Core Processors: Quick Reference Guide, http://cache-www.intel.com/cd/00/00/20/57/205707_205707.pdf
Chai, L., Gao, Q., Panda, D.K.: Understanding the Impact of Multi-Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core System. In: The 7th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2007),
Chai, L., Hartono, A., Panda, D.K.: Designing High Performance and Scalable MPI Intra-node Communication Support for Clusters. In: The IEEE International Conference on Cluster Computing (Cluster 2006) (September 2006)
Dongarra, J., et al.: Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, San Francisco (2003)
Tian, T. Shih, C.-P.: Software Techniques for Shared-Cache Multi-Core Systems, http://softwarecommunity.intel.com/articles/eng/2760.htm
Domeika, M., Kane, L.: Optimization Techniques for Intel Multi-Core Processors, http://softwarecommunity.intel.com/articles/eng/2674.htm
Snir, M., Otto, S., Huss-Lenderman, S., Walker, A., Dongarra, J.: MPI: The complete Reference. MIT Press, Cambridge (1996)
Hwang, K., Xu, Z.: Scalable Parallel Computing. McGraw-Hill, New York (1998)
Edelman, A.: Applied Parallel Computing (2004)
Saldivar, P.M.: Control de un Brazo Mecánico Mediante Técnicas de Computación Suave. M.S. thesis, CITEDI-IPN (2007)
Distributed Computing Toolbox 3 User’s Guide, Mathworks (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cárdenas, M., Tapia, J., Sepúlveda, R., Montiel, O., Melín, P. (2008). Scalability Potential of Multi-core Architecture in a Neuro-Fuzzy System. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70812-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-70812-4_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70811-7
Online ISBN: 978-3-540-70812-4
eBook Packages: EngineeringEngineering (R0)