Abstract
The fuzzy systems present some characteristics that the classical control systems (PI, PD and PID) don’t have, like smoother control, noise immunity, important mathematical complexity reduction, little mathematical knowledge of the model work, and they can obtain results from imprecise data. Broadly stated, fuzzy logic control attempts to come to terms with the informal nature of the control design process. In its most basic form, the so-called Mamdani architecture is directly translating external performance specifications and observations of plant behavior into a rule-based linguistic control strategy. This architecture forms the backbone of the great majority of fuzzy logic control systems reported in the literature in the past years. This paper is based on the fuzzy Lyapunov synthesis, to determine the systems stability, which is based on the Lyapunov criterion; this concept was introduced by Margaliot to adjust the Lyapunov criteria by considering linguistic variables instead of numeric variables to determine the systems stability. The stability will be proving on Mamdani’s architecture fuzzy logic systems type-1 and type-2 respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Margaliot, M., Langholz, G.: New Approaches to Fuzzy Modeling and Control. In: Design and Analysis. World Scientific Co. Pte. Ltd, Singapore (2000)
Yen, J., Langari, R.: Fuzzy Logic Intelligence, control, and Information. Prentice Hall, Englewood Cliffs (1999)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. In: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Inc., Englewood Cliffs (1997)
Mamdani, E.H.: Application of fuzzy algotithms for control of simple dynamic plant. IEEE proceedings 121(12) (1974)
Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems, Univ. of Southern Calif., Los Angeles, CA (June 1998)
Zadeh, L.: Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems 2, 103–111 (1996)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning, Parts 1, 2, and 3, Information Sciences, 8:199–249, 8:301–357, 9:43–80 (1975)
Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, NJ (2001)
Yager, R.: On a general class of fuzzy connectives. Fuzzy Sets and Systems 4, 235–242 (1980)
Rohrs, E., Melsa, J., Schultz, D.: Sistemas de Control Lineal. McGraw-Hill, USA (1994)
Margaliot, M., Langhoiz, G.: Adaptive fuzzy controller design via fuzzy Lyapunov sinthesys. In: Proceedings of the International Conference on Fuzzy Systems (FUZZY-IEEE 1998), Alaska, USA (1998)
Khalil, H.: Nonlinear Systems. Macmillan Publishing company, USA (1992)
Zadeh, L.: Fuzzy Logic=Computing With Words. IEEE Transactions on Fuzzy Systems 4(2), 103–111 (1996)
Chen, G., Phan, T.T.: Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. CRC Press, USA (2000)
Dotoli, M., Jantzen, J.: Debate: Fuzzy Control vs. Conventional Control, http://fuzzy.iau.dtu.dk/debate.nsf.
Margaliot, M., Langholz, G.: A new approach to the design of fuzzy control rules. In: Proceedings of the International Conference on Fuzzy Logic and Applications (Fuzzy 1997), Israel, pp. 248–254 (1997)
Cazarez, N., Castillo, O., Tupak, L.: Estabilidad en Sistemas de Control Difuso Tipo-2, Instituto Tecnologico de Tijuana, Octubre (2005)
Cardenas, S., Castillo, O., Aguilar, L., Cazarez, N.: Intelligent Control of Dynamical Systems with Type-2 Fuzzy Logic and Stability Study. In: Proceedings of the International Conference on Artificial Intelligence (IC’ AI’ 2005), Las Vegas, USA, June 27-30 (2005)
Cardenas, S., Castillo, O., Aguilar, L., Cazarez, N.: Tracking Control For Unicycle Mobile Robot Using A Fuzzy Logic Controller. In: Proceedings of the International Conference on Fuzzy Logic, Neural Networks and Genetic Algorithms 2005 (FNG 2005), Tijuana, Mexico (2005)
Cazarez, N.: Estabilidad en Sistemas de Control con Logica Difusa Tipo-2. Boletin del IEEE-CIS-Mexico (Sociedad de Computacion Inteligente de la IEEE, section Mexico) 1(2), 2 (2005)
Cazarez, N., Castillo, O., Aguilar, L., Cardenas, S.: From Type-1 to Type-2 Fuzzy Logic Control: A Stability and Robustness Study. In: Proceedings of the International Conference on Fuzzy Logic, Neural Networks and Genetic Algorithms 2005 (FNG 2005), Tijuana, Mexico (2005)
Cazarez, N., Castillo, O., Aguilar, L., Cardenas, S.: Lyapunov Stability on Type-2 Fuzzy Logic Control. In: Proceedings of the IEEE International Seminar on Computation Intelligence 2005 (IEEE-ISCI 2005), Mexico Distrito Federal, Mexico, 17–18 de Octubre del (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Morales, J., Castillo, O., Soria, J. (2008). Stability on Type-1 and Type-2 Fuzzy Logic Systems. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70812-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-70812-4_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70811-7
Online ISBN: 978-3-540-70812-4
eBook Packages: EngineeringEngineering (R0)