Summary
The concept of opposition can contribute to improve the performance of population-based algorithms. This chapter presents an overview of a novel opposition-based scheme to accelerate an evolutionary algorithm, differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based computation (OBC) for population initialization and also for generation jumping. Opposite numbers, representing anti-chromosomes, have been utilized to improve the convergence rate of the classical DE. A test suite with 15 well-known benchmark functions is employed for experimental verification. Descriptions for the DE and ODE algorithms, and a comparison strategy are provided. Results are promising and confirm that the ODE outperforms its parent algorithm DE. This work can be regarded as an initial study to exploit oppositional concepts to expedite the optimization process for any population-based approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Feoktistov, V.: Differential Evolution. In: Search of Solutions. Springer, USA (2006)
Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report in ICSI, TR-95-012 (1995)
Price, K., Storn, R.: Differential Evolution: Numerical Optimization Made Easy. Dr. Dobb’s Journal 220, 18–24 (1997)
Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(6), 341–359 (1997)
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series), 1st edn. Springer, Heidelberg (2005)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: A Novel Population Initialization Method for Accelerating Evolutionary Algorithms. Elsevier Journal on Computers and Mathematics with Applications 53(10), 1605–1614 (2007)
Andre, J., Siarry, P., Dognon, T.: An Improvement of the Standard Genetic Algorithm Fighting Premature Convergence in Continuous Optimization. Advance in Engineering Software 32, 49–60 (2001)
Hrstka, O., Kučerová, A.: Improvement of Real Coded Genetic Algorithm Based on Differential Operators Preventing Premature Convergence. Advance in Engineering Software 35, 237–246 (2004)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution Algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 7363–7370 (2006)
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore And KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (2005)
Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 1980–1987. IEEE Publications, Los Alamitos (2004)
Tizhoosh, H.R.: Opposition-Based Learning: A New Scheme for Machine Intelligence. In: Proceedings of International Conference on Computational Intelligence for Modelling Control and Automation - CIMCA 2005, Vienna - Austria, vol. I, pp. 695–701 (2005)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution (ODE). Journal of IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition versus Randomness in Soft Computing Techniques. Elsevier Journal on Applied Soft Computing 8, 906–918 (2008)
Rahnamayan, S.: Opposition-Based Differential Evolution, PhD Thesis, Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada (2007)
Eiben, A.E., Hinterding, R.: Paramater Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)
Das, S., Konar, A., Chakraborty, U.K.: Two Improved Differential Evolution Schemes for Faster Global Search. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington, USA, pp. 991–998 (2005)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution (ODE) With Variable Jumping Rate. In: Proc. of IEEE Symposium on Foundations of Computational Intelligence, Honolulu, Hawaii, USA, pp. 81–88 (2007)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution for Optimization of Noisy Problems. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 6756–6763 (2006)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)
Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the Lvy probability distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)
Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)
Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)
Ali, M.M., Trn, A.: Population set-based global optimization algorithms: Some modifications and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)
Sun, J., Zhang, Q., Tsang, E.P.K.: DE/EDA: A new evolutionary algorithm for global optimization. Information Sciences 169, 249–262 (2005)
Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Berlin (2004)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)
Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-Oppositional Differential Evolution. In: IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 2229–2236 (September 2007)
Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Computing - A Fusion of Foundations, Methodologies and Applications 10(8) (2006)
Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel Differential Evolution. In: Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 2023–2029. IEEE Publications, Los Alamitos (2004)
Shi, Y.-J., Teng, H.-F., Li, Z.-Q.: Cooperative Co-evolutionary Differential Evolution for Function Optimization. In: Proceedings of First International Conference in Advances in Natural Computation (ICNC 2005), Changsha, China, pp. 1080–1088 (2005)
Fan, H.-Y., Lampinen, J.: A Trigonometric Mutation Operation to Differential Evolution. Global Optimization 27(1), 105–129 (2003)
Kaelo, P., Ali, M.M.: Probabilistic adaptation of point generation schemes in some global optimization algorithms. Optimization Methods and Software 27(3), 343–357 (2006)
Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO 2005), Washington DC, USA, pp. 967–974 (2005)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., USA (2005)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Rahnamayan, S., Tizhoosh, H.R. (2008). Differential Evolution Via Exploiting Opposite Populations. In: Tizhoosh, H.R., Ventresca, M. (eds) Oppositional Concepts in Computational Intelligence. Studies in Computational Intelligence, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70829-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-70829-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70826-1
Online ISBN: 978-3-540-70829-2
eBook Packages: EngineeringEngineering (R0)