Skip to main content

Differential Evolution Via Exploiting Opposite Populations

  • Chapter
Oppositional Concepts in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 155))

Summary

The concept of opposition can contribute to improve the performance of population-based algorithms. This chapter presents an overview of a novel opposition-based scheme to accelerate an evolutionary algorithm, differential evolution (DE). The proposed opposition-based DE (ODE) employs opposition-based computation (OBC) for population initialization and also for generation jumping. Opposite numbers, representing anti-chromosomes, have been utilized to improve the convergence rate of the classical DE. A test suite with 15 well-known benchmark functions is employed for experimental verification. Descriptions for the DE and ODE algorithms, and a comparison strategy are provided. Results are promising and confirm that the ODE outperforms its parent algorithm DE. This work can be regarded as an initial study to exploit oppositional concepts to expedite the optimization process for any population-based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Feoktistov, V.: Differential Evolution. In: Search of Solutions. Springer, USA (2006)

    Google Scholar 

  2. Storn, R., Price, K.: Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, Technical Report in ICSI, TR-95-012 (1995)

    Google Scholar 

  3. Price, K., Storn, R.: Differential Evolution: Numerical Optimization Made Easy. Dr. Dobb’s Journal 220, 18–24 (1997)

    Google Scholar 

  4. Storn, R., Price, K.: Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(6), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series), 1st edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  6. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: A Novel Population Initialization Method for Accelerating Evolutionary Algorithms. Elsevier Journal on Computers and Mathematics with Applications 53(10), 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andre, J., Siarry, P., Dognon, T.: An Improvement of the Standard Genetic Algorithm Fighting Premature Convergence in Continuous Optimization. Advance in Engineering Software 32, 49–60 (2001)

    Article  Google Scholar 

  8. Hrstka, O., Kučerová, A.: Improvement of Real Coded Genetic Algorithm Based on Differential Operators Preventing Premature Convergence. Advance in Engineering Software 35, 237–246 (2004)

    Article  Google Scholar 

  9. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution Algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 7363–7370 (2006)

    Google Scholar 

  10. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization, Technical Report, Nanyang Technological University, Singapore And KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (2005)

    Google Scholar 

  11. Vesterstroem, J., Thomsen, R.: A Comparative Study of Differential Evolution, Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark Problems. In: Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 1980–1987. IEEE Publications, Los Alamitos (2004)

    Chapter  Google Scholar 

  12. Tizhoosh, H.R.: Opposition-Based Learning: A New Scheme for Machine Intelligence. In: Proceedings of International Conference on Computational Intelligence for Modelling Control and Automation - CIMCA 2005, Vienna - Austria, vol. I, pp. 695–701 (2005)

    Google Scholar 

  13. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution (ODE). Journal of IEEE Transactions on Evolutionary Computation 12(1), 64–79 (2008)

    Article  Google Scholar 

  14. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition versus Randomness in Soft Computing Techniques. Elsevier Journal on Applied Soft Computing 8, 906–918 (2008)

    Article  Google Scholar 

  15. Rahnamayan, S.: Opposition-Based Differential Evolution, PhD Thesis, Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada (2007)

    Google Scholar 

  16. Eiben, A.E., Hinterding, R.: Paramater Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  17. Das, S., Konar, A., Chakraborty, U.K.: Two Improved Differential Evolution Schemes for Faster Global Search. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington, USA, pp. 991–998 (2005)

    Google Scholar 

  18. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution (ODE) With Variable Jumping Rate. In: Proc. of IEEE Symposium on Foundations of Computational Intelligence, Honolulu, Hawaii, USA, pp. 81–88 (2007)

    Google Scholar 

  19. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Opposition-Based Differential Evolution for Optimization of Noisy Problems. In: IEEE Congress on Evolutionary Computation (CEC 2006), IEEE World Congress on Computational Intelligence, Vancouver, Canada, pp. 6756–6763 (2006)

    Google Scholar 

  20. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  21. Lee, C.Y., Yao, X.: Evolutionary programming using mutations based on the Lvy probability distribution. IEEE Transactions on Evolutionary Computation 8(1), 1–13 (2004)

    Article  Google Scholar 

  22. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

  23. Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(6), 448–462 (2005)

    MATH  Google Scholar 

  25. Ali, M.M., Trn, A.: Population set-based global optimization algorithms: Some modifications and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sun, J., Zhang, Q., Tsang, E.P.K.: DE/EDA: A new evolutionary algorithm for global optimization. Information Sciences 169, 249–262 (2005)

    Article  MathSciNet  Google Scholar 

  27. Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Berlin (2004)

    MATH  Google Scholar 

  28. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. Journal of IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  29. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-Oppositional Differential Evolution. In: IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 2229–2236 (September 2007)

    Google Scholar 

  30. Teo, J.: Exploring dynamic self-adaptive populations in differential evolution. Soft Computing - A Fusion of Foundations, Methodologies and Applications 10(8) (2006)

    Google Scholar 

  31. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel Differential Evolution. In: Proceedings of the Congress on Evolutionary Computation (CEC 2004), vol. 2, pp. 2023–2029. IEEE Publications, Los Alamitos (2004)

    Chapter  Google Scholar 

  32. Shi, Y.-J., Teng, H.-F., Li, Z.-Q.: Cooperative Co-evolutionary Differential Evolution for Function Optimization. In: Proceedings of First International Conference in Advances in Natural Computation (ICNC 2005), Changsha, China, pp. 1080–1088 (2005)

    Google Scholar 

  33. Fan, H.-Y., Lampinen, J.: A Trigonometric Mutation Operation to Differential Evolution. Global Optimization 27(1), 105–129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kaelo, P., Ali, M.M.: Probabilistic adaptation of point generation schemes in some global optimization algorithms. Optimization Methods and Software 27(3), 343–357 (2006)

    Article  MathSciNet  Google Scholar 

  35. Noman, N., Iba, H.: Enhancing differential evolution performance with local search for high dimensional function optimization. In: Proceedings of the 2005 conference on Genetic and evolutionary computation (GECCO 2005), Washington DC, USA, pp. 967–974 (2005)

    Google Scholar 

  36. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., USA (2005)

    Google Scholar 

  37. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hamid R. Tizhoosh Mario Ventresca

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahnamayan, S., Tizhoosh, H.R. (2008). Differential Evolution Via Exploiting Opposite Populations. In: Tizhoosh, H.R., Ventresca, M. (eds) Oppositional Concepts in Computational Intelligence. Studies in Computational Intelligence, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70829-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70829-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70826-1

  • Online ISBN: 978-3-540-70829-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics