Skip to main content

Tree-Series-to-Tree-Series Transformations

  • Conference paper
Implementation and Applications of Automata (CIAA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5148))

Included in the following conference series:

  • 477 Accesses

Abstract

We investigate the tree-series-to-tree-series (ts-ts) transformation computed by tree series transducers. Unless the used semiring is complete, this transformation is, in general, not well-defined. In practice, many used semirings are not complete (like the probability semiring). We establish a syntactical condition that guarantees well-definedness of the ts-ts transformation in arbitrary commutative semirings. For positive (ie, zero-sum and zero-divisor free) semirings the condition actually characterizes the well-definedness, so that well-definedness is decidable in this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuich, W.: Tree transducers and formal tree series. Acta Cybernet 14(1), 135–149 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom.Lang.Combin. 7(1), 11–70 (2002)

    MATH  Google Scholar 

  3. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  4. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)

    MATH  MathSciNet  Google Scholar 

  5. Thatcher, J.W.: Tree automata—an informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice Hall, Englewood Cliffs (1973)

    Google Scholar 

  6. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Systems Theory 9(3), 198–231 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  10. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  11. Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput. Sci. 27(1–2), 211–215 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1), 1–33 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuich, W.: Formal power series over trees. In: Proc.3rd Int.Conf. Developments in Language Theory, Aristotle University of Thessaloniki, pp. 61–101 (1998)

    Google Scholar 

  14. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Kuich, W.: Full abstract families of tree series I. In: Jewels Are Forever, pp. 145–156. Springer, Heidelberg (1999)

    Google Scholar 

  16. Maletti, A.: Pure and o-substitution. Int. J. Found.Comput.Sci. 18(4), 829–845 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Salomaa, A., Soittala, M.: Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  18. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Computer Science. An EATCS Series, vol. 5. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  19. Bozapalidis, S.: Context-free series on trees. Inform. and Comput. 169(2), 186–229 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Maletti, A.: The power of tree series transducers of type I and II. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 338–349. Springer, Heidelberg (2005)

    Google Scholar 

  21. Maletti, A.: Hierarchies of tree series transformations revisited. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 215–225. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oscar H. Ibarra Bala Ravikumar

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maletti, A. (2008). Tree-Series-to-Tree-Series Transformations. In: Ibarra, O.H., Ravikumar, B. (eds) Implementation and Applications of Automata. CIAA 2008. Lecture Notes in Computer Science, vol 5148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70844-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70844-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70843-8

  • Online ISBN: 978-3-540-70844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics