Abstract
We investigate the tree-series-to-tree-series (ts-ts) transformation computed by tree series transducers. Unless the used semiring is complete, this transformation is, in general, not well-defined. In practice, many used semirings are not complete (like the probability semiring). We establish a syntactical condition that guarantees well-definedness of the ts-ts transformation in arbitrary commutative semirings. For positive (ie, zero-sum and zero-divisor free) semirings the condition actually characterizes the well-definedness, so that well-definedness is decidable in this scenario.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kuich, W.: Tree transducers and formal tree series. Acta Cybernet 14(1), 135–149 (1999)
Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom.Lang.Combin. 7(1), 11–70 (2002)
Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)
Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)
Thatcher, J.W.: Tree automata—an informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice Hall, Englewood Cliffs (1973)
Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Systems Theory 9(3), 198–231 (1975)
Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1977)
May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)
Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1998)
Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)
Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput. Sci. 27(1–2), 211–215 (1983)
Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1), 1–33 (1999)
Kuich, W.: Formal power series over trees. In: Proc.3rd Int.Conf. Developments in Language Theory, Aristotle University of Thessaloniki, pp. 61–101 (1998)
Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)
Kuich, W.: Full abstract families of tree series I. In: Jewels Are Forever, pp. 145–156. Springer, Heidelberg (1999)
Maletti, A.: Pure and o-substitution. Int. J. Found.Comput.Sci. 18(4), 829–845 (2007)
Salomaa, A., Soittala, M.: Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)
Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Computer Science. An EATCS Series, vol. 5. Springer, Heidelberg (1986)
Bozapalidis, S.: Context-free series on trees. Inform. and Comput. 169(2), 186–229 (2001)
Maletti, A.: The power of tree series transducers of type I and II. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 338–349. Springer, Heidelberg (2005)
Maletti, A.: Hierarchies of tree series transformations revisited. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 215–225. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Maletti, A. (2008). Tree-Series-to-Tree-Series Transformations. In: Ibarra, O.H., Ravikumar, B. (eds) Implementation and Applications of Automata. CIAA 2008. Lecture Notes in Computer Science, vol 5148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70844-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-70844-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70843-8
Online ISBN: 978-3-540-70844-5
eBook Packages: Computer ScienceComputer Science (R0)