Skip to main content

Specifying Monogenetic Specializers by Means of a Relation Between Source and Residual Programs

  • Conference paper
Perspectives of Systems Informatics (PSI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4378))

Abstract

A specification of a class of specializers for a tiny functional language in form of natural semantics inference rules is presented. The specification defines a relation between source and residual programs with respect to an initial configuration (a set of input data). The specification expresses the idea of what is to be a specialized program, avoiding where possible the details of how a specializer builds it. In particular, it abstracts from the difference between on-line and off-line specialization.

The class of specializers specified here is limited to monogenetic specializers, which includes specializers based upon partial evaluation as well as restricted supercompilation. The specification captures such supercompilation notions as configuration, driving, generalization of a configuration, and a simple case of splitting a configuration.

The proposed specification is an intensional definition of equivalence between source and residual programs. It provides a shorter cut for proving the correctness and other properties of specializers than usual reduction to the extensional equivalence of programs does.

Supported by Russian Foundation for Basic Research grant No. 06-01-00574.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Consel, C., Khoo, S.C.: On-line and off-line partial evaluation: semantic specifications and correctness proofs. Journal of Functional Programming 5(4), 461–500 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Glück, R., Klimov, A.V.: Occam’s razor in metacomputation: the notion of a perfect process tree. In: Cousot, P., et al. (eds.) WSA 1993. LNCS, vol. 724, pp. 112–123. Springer, Heidelberg (1993)

    Google Scholar 

  3. Gomard, C.K.: A self-applicable partial evaluator for the lambda calculus: correctness and pragmatics. ACM TOPLAS 14(2), 147–172 (1992)

    Article  Google Scholar 

  4. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  5. Kahn, G.: Natural Semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  6. Klimov, A.V.: A specification of a class of supercompilers. In: O. Danvy, R. Glück, and P. Thiemann (eds.) Draft Proceedings of the Dagstuhl Seminar on Partial Evaluation, pp. 232. Technical Report WSI-96-6, Universität Tübingen, Germany (1996)

    Google Scholar 

  7. Romanenko, S.A.: Arity raiser and its use in program specialization. In: Jones, N.D. (ed.) ESOP 1990. LNCS, vol. 432, pp. 341–360. Springer, Heidelberg (1990)

    Google Scholar 

  8. Secher, J.P., Sørensen, M.H.B.: On perfect supercompilation. In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp. 113–127. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Sørensen, M.H., Glück, R.: Introduction to supercompilation. In: Hatcliff, J., Thiemann, P. (eds.) DIKU 1998. LNCS, vol. 1706, pp. 246–270. Springer, Heidelberg (1999)

    Google Scholar 

  10. Sørensen, M.H., Glück, R., Jones, N.D.: A positive supercompiler. Journal of Functional Programming 6(6), 811–838 (1996)

    Article  Google Scholar 

  11. Turchin, V.F.: The language Refal, the theory of compilation and metasystem analysis. Courant Computer Science Report 20, Courant Institute of Mathematical Sciences, New York University (1980)

    Google Scholar 

  12. Turchin, V.F.: The concept of a supercompiler. Transactions on Programming Languages and Systems 8(3), 292–325 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Irina Virbitskaite Andrei Voronkov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klimov, A. (2007). Specifying Monogenetic Specializers by Means of a Relation Between Source and Residual Programs. In: Virbitskaite, I., Voronkov, A. (eds) Perspectives of Systems Informatics. PSI 2006. Lecture Notes in Computer Science, vol 4378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70881-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70881-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70880-3

  • Online ISBN: 978-3-540-70881-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics