Abstract
Formal Concept Analysis (FCA) is a natural framework for learning from positive and negative examples. Indeed, learning from examples results in sets of frequent concepts whose extent contains only these examples. In terms of association rules, the above learning strategy can be seen as searching the premises of exact rules where the consequence is fixed. In its most classical setting, FCA considers attributes as a non-ordered set. When attributes of the context are ordered, Conceptual Scaling allows the related taxonomy to be taken into account by producing a context completed with all attributes deduced from the taxonomy. The drawback, however, is that concept intents contain redundant information. In this article, we propose a parameterized generalization of a previously proposed algorithm, in order to learn rules in the presence of a taxonomy. The taxonomy is taken into account during the computation so as to remove all redundancies from intents. Simply changing one component, this parameterized algorithm can compute various kinds of concept-based rules. We present instantiations of the parameterized algorithm for learning positive and negative rules.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in massive databases. In: Proc. of the ACM-SIGMOD 1993 Int. Conf. on Management of Data, May 1993, pp. 207–216. ACM Press, New York (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 487–499 (1994)
Brin, S., et al.: Dynamic itemset counting and implication rules for market basket data. In: Peckham, J. (ed.) Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 255–264. ACM Press, New York (1997)
Bordat, J.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques, Informatiques et Sciences Humaines 24(94), 31–47 (1986)
Cellier, P., et al.: An algorithm to find frequent concepts of a formal context with taxonomy. In: Concept Lattices and Their Applications (2006)
Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management 40(3), 383–419 (2004)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)
Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
Pasquier, N.: Data Mining: Algorithmes d’extraction et de réduction des régles d’association dans les bases de données. Computer science, Université Blaise Pascal - Clermont-Ferrand II (January 2000)
Pasquier, N., et al.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)
Padioleau, Y., Ridoux, O.: A logic file system. In: Proc. USENIX Annual Technical Conference (2003)
Sigonneau, B., Ridoux, O.: Indexation multiple et automatisée de composants logiciels. In: Technique et Science Informatiques (2006)
Zaki, M.J.: Mining non-redundant association rules. Data Mining Knowl. Discov. 9(3), 223–248 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Cellier, P., Ferré, S., Ridoux, O., Ducassé, M. (2007). A Parameterized Algorithm for Exploring Concept Lattices. In: Kuznetsov, S.O., Schmidt, S. (eds) Formal Concept Analysis. ICFCA 2007. Lecture Notes in Computer Science(), vol 4390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70901-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-70901-5_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70828-5
Online ISBN: 978-3-540-70901-5
eBook Packages: Computer ScienceComputer Science (R0)