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Abstract. Kuznetsov shows that Formal Concept Analysis (FCA) is
a natural framework for learning from positive and negative examples.
Indeed, the results of learning from positive examples (respectively neg-
ative examples) are sets of frequent concepts with respect to a minimal
support, whose extent contains only positive examples (respectively neg-
ative examples). In terms of association rules, the above learning can
be seen as searching the premises of exact rules where the consequence
is fixed. When augmented with statistical indicators like confidence and
support it is possible to extract various kinds of concept-based rules tak-
ing into account exceptions. FCA considers attributes as a non-ordered
set. When attributes of the context are ordered, Conceptual Scaling
allows the related taxonomy to be taken into account by producing a
context completed with all attributes deduced from the taxonomy. The
drawback of that method is concept intents contain redundant informa-
tion. In a previous work, we proposed an algorithm based on Bordat’s
algorithm to find frequent concepts in a context with taxonomy. In that
algorithm, the taxonomy is taken into account during the computation
so as to remove all redundancy from intents. In this article, we propose a
parameterized generalization of that algorithm for learning rules in the
presence of a taxonomy. Simply changing one component, that parame-
terized algorithm can compute various kinds of concept-based rules. We
present applications of the parameterized algorithm to find positive and
negative rules.

1 Introduction

Learning from example is often the best approach when it is not possible to
design a model a priori. This has been mainly tried for classification purpose. In
that case, one proposes to represent classes by examples, or counter-examples,
and a formal model of the classes is learned by a machine and applied to further
inputs.

Kuznetsov shows that Formal Concept Analysis (FCA) [GW99] is a natu-
ral framework for learning from positive and negative examples [Kuz04,Mit97].
Indeed, the results of learning from positive examples (respectively negative ex-
amples) are sets of frequent concepts with respect to a minimal support, whose



extent contains only positive examples (respectively negative examples). In terms
of association rules of Agrawal et al. [AIS93,AS94], the above learning can be
seen as searching the premises of exact rules where the consequence is fixed.
When augmented with statistical indicators like confidence and support it is
possible to extract various kinds of concept-based rules taking into account ex-
ceptions [PBTL99,Zak04].

The input of FCA is a formal context that relates objects and attributes.
FCA considers attributes as a non-ordered set. When attributes of the context
are ordered, Conceptual Scaling [GW99] allows the related taxonomy to be taken
into account by producing a context completed with all attributes deduced from
the taxonomy. The drawback of that method is that concept intents contain
redundant information. In a previous work [CFRD06], we proposed an algorithm
based on Bordat’s algorithm [Bor86] to find frequent concepts in a context with
taxonomy. In that algorithm, the taxonomy is taken into account during the
computation so as to remove all redundancies from intents.

There are several kinds of association rules, and several problems on this
domain: e.g. finding all association rules with respect to some criteria, computing
all association rules with a given conclusion or premises. It can be easily foreseen
that these different problems will be solved by variants of a generic algorithm.
Thus, it is important that that generic algorithm be designed and implemented
generically. We propose a parameterized generalization of Bordat’s algorithm to
learn rules in the presence of taxonomy. Simply changing one component, that
parameterized algorithm can compute various kinds of concept-based rules. We
present applications of the parameterized algorithm to find positive and negative
rules. Positive rules predict some given target (e.g. poisonous), while negative
rules predict its opposite (e.g. edible). The advantage of taking into account the
taxonomy is to reduce the size of the results. For example, in a context about
Living Things, for a the target “suckling” the rule “Living Things”∧ “Animalia”
∧ “Chordata” ∧ “Vertebrata” ∧ “Mammalia”→ “suckling” is less relevant than
the equivalent rule “Mammalia” → “suckling” where all redundant elements
have been eliminated.

Our approach is formalized using the Logical Concept Analysis (LCA) frame-
work [FR04], the taxonomy is taken into account as a specialized logic.

The contribution of this article is a generalization of the exploration of fre-
quent concepts in a context with taxonomy in order to compute concept-based
rules where statistical indicators are taken into account. Two applications of
that generalization are presented.

In the following, Section 2 briefly recalls the framework, Logical Concept
Analysis (LCA), used to define FCA with taxonomy (FCA-Tax). Section 3
presents the generalization of the algorithm described in [CFRD06] to filter fre-
quent concepts in a formal context with taxonomy. Section 4 shows how to learn
rules. Section 5 illustrates that the algorithm produces, as efficiently as with
the completed context, sets of rules where rules are more compact. Section 6
concludes this paper.



2 A Logical Framework for FCA with Taxonomy

In this section, we formally describe Formal Concept Analysis with Taxon-
omy (FCA-Tax) using the Logical Concept Analysis (LCA) framework. We first
present an example of context with taxonomy. Then we briefly introduce LCA,
concept-based rules, and we instanciate LCA to FCA-Tax. The taxonomy de-
scribes that the attributes of the context are ordered and thus a taxonomy is
a kind of logic where the subsumption relation represents this order relation. A
detailed description of LCA, as well as a precise discussion on how it generalizes
FCA can be found in [FR04].

2.1 Example of Context with a Taxonomy
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Accipitridae • •
Alcedinidae • •
Alcidae • • • •
Anatidae • •
Cathartide • •
Charadriidae • • • • •
Corvidae • •
Drepanidinae • •
Emberizidae • •
Gruidae • • •
Icteridae • •
Muscicapidae • •
Strigidae • • • • • •
Tyrannidae • • • • •
Vireonidae • •

Table 1. Context of threatened or endangered bird families

The context given Table 1 represents the observations of threatened and
endangered bird families. Data come from the web site of USFWS1 (U.S Fish
and Wildlife Service). The objects are bird families and each family is described
by a set of states and regions where specimens have been observed and by a
status: threatened or endangered . Note that in this context objects are elements
of what could be a taxonomy in another context. We have chosen this context
because it refers to a knowledge, (e.g. Hawai → Pacific) we believe is which

1 http://ecos.fws.gov/tess public/CriticalHabitat.do?listings=0&nmfs=1
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Fig. 1. Example: taxonomy of USA states and regions.

better known than the taxonomy of Living Things. Figure 1 shows the taxonomy
of states and regions of USA. USA states are gathered in regions and this forms
a taxonomy.

The context given in Table 1 is the straightforward transcription of the infor-
mation found on the USFWS site. Note that it is not completed with respect to
FCA. For example object Accipitridae which has in its description the attribute
Florida has not the attribute Southeast . The information that an object has the
attribute Florida implies that it has the attribute Southeast , is given implicitely
by the taxonomy. We have observed that this situation is quite common.

2.2 Logical Concept Analysis (LCA)

In LCA the description of an object is a logical formula instead of a set of
attributes as in FCA.

Definition 1 (logical context). A logical context is a triple (O,L, d) where
O is a set of objects, L is a logic (e.g. proposition calculus) and d is a mapping
from O to L that describes each object by a formula.

The definition of a logic is given in Definition 2.

Definition 2 (logic). A logic is a 6-tuple L = (L,v,u,t,>,⊥) where

– L is the language of formulas,
– v is the subsumption relation,
– u and t are respectively conjunction and disjunction,
– > and ⊥ are respectively tautology and contradiction.

Definition 3 defines the logical versions of extent and intent. The extent of a
logical formula f is the set of objects in O whose description is subsumed by f .
The intent of a set of objects O is the most precise formula that subsums all
descriptions of objects in O. Definition 4 gives the definition of a logical concept.



Definition 3 (extent, intent). Let K = (O,L, d) be a logical context. The
definition of extent and intent are:

– ∀f ∈ L ext(f) = {o ∈ O | d(o) v f }
– ∀O ⊆ O int(O) =

⊔
o∈O d(o)

Definition 4 (logical concept). Let K = (O,L, d) be a logical context. A log-
ical concept is a pair c = (O, f) where O ⊆ O, and f ∈ L, such that int(O) ≡ f
and ext(f) = O. O is called the extent of the concept c, i.e. extc, and f is called
its intent, i.e. intc.

The set of all logical concepts is ordered and forms a lattice: let c and c′ be two
concepts c < c′ iff extc ⊂ extc′ . Note also that c < c′ if intc v intc′ but the
converse is false.

The fact that the definition of a logic is left so abstract makes it possible
to accommodate non-standard types of logics. For example, attributes can be
valued (e.g. integer intervals, string patterns), and each domain of value can
be defined as a logic. The subsumption relation allows to order integers and
intervals, strings and substrings, and the terms of a taxonomy.

2.3 Concept-Based Rules

Definition 5 (concept-based rules). The concept-based rules consider a tar-
get T ⊂ L such that T represents a set of objects that are positive (respectively
negative) examples. Concept-based rules have the form: X → T where X is the
intent of a frequent concept. A rule can have exceptions. These exceptions are
measured with statistic indicators like support and confidence, defined below.

There exists several statistical indicators like support, confidence, lift and
conviction [BMUT97]. We have chosen support and confidence to measure the
relevance of the rules, because they are the more widespread. However, the al-
gorithm presented on this article does not depend on this choice.

Definition 6 (support). The support of a formula f is the number of objects
described by that formula. It is defined by:

sup(f) = ‖ext(f)‖

where ‖X‖ denotes the cardinal of a set X.
The support of a rule is the number of objects described by both f1 and f2. It

is given by:

sup(f1 → f2) = ‖ext(f1) ∩ ext(f2)‖

Definition 7 (confidence). The confidence of a rule f1 → f2 describes the
probability to have f2 in a description which contains f1. It is defined by:

conf(f1 → f2) =
‖ext(f1) ∩ ext(f2)‖

‖ext(f1)‖



The lift is a variant of confidence which measure to what extent the proba-
bility to have f2 is augmented by f1.

The support indicator applies as well to concepts as to rules. In the case of
concept it introduces the notion of frequent concept.

Definition 8 (frequent concept). A concept is called frequent with respect to
a min sup threshold if sup(intc) is greater than min sup.

2.4 Formal Concept Analysis with Taxonomy

FCA-Tax is more general than FCA and can be formalized in LCA. Indeed, the
attributes of the context are ordered.

Definition 9 (taxonomy). A taxonomy is a partially ordered set of terms:

TAX =< T,≤ >

where T is the set of terms and leq is the partial ordering. Let x and y be
attributes in T , x ≤ y means that y is more general than x.

Example 1. In Figure 1: Hawai ≤ Pacific ≤ USA.

Definition 10 (predecessors). Let TAX =< T,≤ > be a taxonomy. For a
set of attributes X in T , its predecessors in the taxonomy TAX are denoted by

↑tax (X) = { t ∈ T | ∃x ∈ X : x ≤ t }

Example 2.

↑tax ({Mississipi ,Arizona}) = {Mississipi ,Southeast ,Arizona,

Southwest ,USA}

Definition 11 (successors). Let TAX =< T,≤ > be a taxonomy. For a set
of attributes X in T , its succesors in the taxonomy TAX are denoted by

succtax(X) = { t ∈ T | ∃x ∈ X : x > t ∧ (6 ∃t′ ∈ Tx > t′ > t) }

Example 3.

succtax({USA}) = {Pacific,Southeast ,Southwest ,GreatLakes/BigRivers ,

Northeast ,Mountains/Prairie,Region7 ,Region8 ,Southwest ,USA}

Definition 12 (Mintax). Let TAX =< T,≤ > be a taxonomy. Mintax(X) is
the set of minimal elements with respect to TAX.

Mintax(X) = { t ∈ X | 6 ∃x ∈ X : x < t }



Example 4. In fact, Mintax(X) is X minus its elements that are
redundant with respect to TAX .

Mintax({Florida,Southeast ,USA}) = {Florida}

Southeast and USA are not needed because they are implicitly present
with Florida , thanks to the taxonomy.

Definition 13 (Ltax). The specialization of the logic of LCA for FCA-Tax
TAX =< T,≤ > is Ltax defined by:

– L = 2T

– v such that X v Y iff ↑tax (X) ⊇ ↑tax (Y )
– u is ∪tax such that X ∪tax Y = Mintax(X ∪ Y ),
– t is ∩tax such that X ∩tax Y = Mintax(↑tax (X) ∩ ↑tax (Y )),
– > = {x ∈ T |ext({x}) = O}
– ⊥=Mintax(T ).

L = {{Hawai}, {Oregon}, {Pacific}, {Southwest}, ..., {USA},

{Hawai , Southwest}, ...} (1)

{Michigan,Florida} v {Michigan, Southeast} (2)

{Michigan, Southeast} u {Florida} = {Michigan, Florida} (3)

{Mississipi} t {Florida} = {Southeast} (4)

> = {USA} (5)

⊥ = {Hawai ,Washington, Oregon, Arizona, Michigan,Mississipi ,

Florida, Utah, Alaska,California,Nevada} (6)

Fig. 2. Examples of operations on bird families of Table 1.

Example 5. Figure 2 shows examples of operations on the context
of bird families. The language, L, allows redundancy in descriptions.
However, rules that our algorithm will compute will contain no redun-
dancy (Equation (1)). Equation (2) illustrates the subsumption relation.
Florida implies Southeast in the taxonomy, thus all bird families ob-
served in Michigan and Florida can also be said to have been observed



in Michigan and Southeast. Equation (3) represents the conjunction op-
eration. To be observed in Florida is an information more precise than to
be observed in Southeast, thus only the attribute Florida is kept. Equa-
tion (4) represents the disjunction operation. The fact that birds are
observed in Michigan or Florida can be generalized by birds which are
observed in Southeast. The top concept contains only one attribute USA
(equation (5)), and the bottom concept all minimal attributes (equation
(6)).

All notions defined in LCA are kept in FCA-Tax, in particular extent, intent,
and concept lattice. FCA-Tax differs from FCA in that the intents of concepts
in FCA-Tax are without redundancy.

3 A Parameterized Algorithm to Find Concept-Based

Rules

In a previous article [CFRD06] we described an algorithm for finding frequent
concepts in a context with taxonomy. The algorithm is a variant of Bordat’s
algorithm which takes care of the taxonomy for avoiding redundant intents. In
this section, a generalization of this algorithm is described in order to search
concept-based rules. In a first step, the relation between frequent concepts and
rules is presented. The configurable filter function, called FILTER, is intro-
duced. In a second step, the parameterized algorithm with this filter function is
described. Finally, we discuss the differences with Bordat’s algorithm.

3.1 From Frequent Concepts to Rules

Relevant rules are rules that are frequently observed. In general (e.g. in [PBTL99]),
all frequent rules are searched, without any constraints on the premises and con-
clusions. However, the learning case makes one search for frequent rules where
either the premise or the conclusion is fixed by the learning target. So, one
searches for conclusions or premises that match the target. For instance, learn-
ing sufficient conditions for a target T is to search frequent implications like
X → T . As we have seen in Section 2, the frequency of a rule is evaluated
by a statistical indicator: the support. Thus, a rule cannot be more frequent
than its premise or its conclusion, because let c be a frequent concept then
sup(intc) ≥ sup(intc ∪ T ) = sup(intc → T ). This implies that only the intents
of frequent concepts are good candidates to be the premises of the searched rules.

Therefore, in order to learn rules, the frequent concepts that are computed by
the algorithm presented in [CFRD06] be filtered. Only must frequent concepts
that form relevant rules with respect to statistical indicators are kept.

In addition, some statistical indicators like the support, are monotonous. For
instance, given two concepts c and c′, c < c′ ⇒ sup(c) < sup(c′) holds. It means
that if the support of a concept c is lower than min sup, all subconcepts of c have



a support lower than min sup. Thus, it is not relevant to explore subconcepts
of c.

A filter function, called FILTER, is defined in order to take into account this
property. FILTER takes two parameters: extc and extT . These two parameters
are sufficient to compute all statistical indicators like support, confidence, lift and
conviction as it is illustrated in Figure 3. Using extc and extT , we can compute
extc ∪ extT , extc ∩ extT , and all complements like O \ extc, O \ (extc ∪ extT ).
FILTER(extc, extT ) returns two booleans: KEEP and CONTINUE. KEEP
tells whether intc → T is a relevant rule with respect to statistical indicators.
CONTINUE allows monotonous properties to be considered. CONTINUE
tells whether there are may be some subconcept c′ of c such that int′c → T
is a relevant rule. Thus FILTER gives four possibilities: 1) keep the current
concept and explore subconcepts, 2) keep the current concept and do not explore
subconcepts, 3) do not keep the current concept and explore subconcepts, 4) do
not keep the current concept and do not explore subconcepts. In Section 4, we
see on examples how these four possibilities are used.

extTextc

O

sup(intc → T ) = ‖extc ∩ ext(T )‖

conf(intc → T ) = ‖extc ∩ ext(T )‖
‖extc‖

lift(intc → T ) = ‖extc ∩ ext(T )‖
‖extc‖ ∗ ‖ext(T )‖

conv(intc → T ) = ‖extc‖∗‖O\ext(T )‖
‖extc ∩ (O\ext(T ))‖

Fig. 3. Computing indicators using the extents of a frequent concept c and a target T .

3.2 Algorithm Parameterized with Function FILTER

The algorithm uses two data structures: incrc of a concept c and Explo-
ration. Appart from the top concept, each concept s is computed from a con-
cept p(s), which we call the predecessor of s. This predecessor is such that there
exists a set of attributes, X , such that exts = extp(s) ∩ ext(X). We call X an
increment of p(s), and we say that X leads from p(s) to s. All known incre-
ments are kept in a data structure incrc which is a mapping from subconcepts
to increments: s maps to X iff X leads to s. Notation incrc[s→ X ] means that
the mapping is modified so that s maps to X . Exploration contains a set of
frequent subconcepts that are to be explored. In Exploration, each concept
s to explore is represented by a triple: ((exts → X), intp(s), incrp(s)) where
exts = ext(intp(s) ∪ X) and exts ≥ min sup, which means that X is an incre-
ment from p(s) to s. incrp(s) are increments of the predecessor concept of s.

An invariant for the correction of the algorithm is that

incrc ⊆ {(s→ X) | exts = extc ∩ ext(X) ∧ ‖exts‖ ≥ min sup} .



Algorithm 1 Explore concepts

Require: K, a context with a taxonomy TAX; and min sup, a minimal support
Ensure: Solution, a set of all frequent concepts of K with respect to min sup, and

check FILTER

1: Solution := ∅
2: Exploration.add((O → >, ∅, ∅)
3: while Exploration 6= ∅ do

4: let ((exts → X), intp(s), incrp(s)) = maxext(Exploration) in

5: (KEEP, CONTINUE) := FILTER(exts, extT )
6: if KEEP or CONTINUE then

7: ints := (intp(s) ∪tax X) ∪tax {y ∈ succ+
tax(X) | exts ⊆ ext({y})}

8: if CONTINUE then

9: incrs := {(c → X) | ∃c′ : (c′ → X) ∈ incrp(s)∧c = exts∩c′∧‖c‖ ≥ min sup}
10: for all y ∈ succtax(X) do

11: let c = exts ∩ ext({y}) in

12: if ‖c‖ ≥ min sup then

13: incrs := incrs[c → (incrs(c) ∪ {y})]
14: end if

15: end for

16: for all (ext → Y ) in incrs do

17: Exploration.add((ext → Y ), ints, incrs)
18: end for

19: end if

20: if KEEP then

21: Solution.add(exts, ints)
22: end if

23: end if

24: end while

Thus, all elements of incrc are frequent subconcepts of c.

An invariant for completeness is that

extc ⊃ exts ∧ ‖exts‖ ≥ min sup ∧ ¬∃X : (s→ X) ∈ incrc
=⇒ ∃s′ : extc ⊃ exts′ ⊃ exts ∧ ∃X : (s′ → X) ∈ incrc .

Thus, all frequent subconcepts of c that are not in incrc are subconcepts of a
subconcept of c which is in incrc. See [CFRD06] for more details.

Algorithm Explore concepts allows frequent concepts of a context with tax-
onomy to be filtered with the configurable function FILTER previously intro-
duced. The exploration of the concept lattice is top-down and starts with the
top of the lattice, i.e. the concept labelled by roottax (step 2).

At each iteration of the while loop, an element of Exploration with the
largest extent is selected (step 4): ((exts → X), intp(s), incrp(s)). This element
represents a concept s which is tested with the function FILTER (step 5). Then
at step 7, the intent of s is completed with respect to the taxonomy and thanks to
∪tax without redundancy, defined at Section 2. incrs is computed with elements
of incrp(s) (step 9) and successors of X in the taxonomy (steps 10-15). Note



that increments of p(s) can still be increments of s. For instance, if p(s) > s,
p(s) > s′, and s > s′, the increment of p(s) which leads to s′ is also an increment
of s that leads to s′. If these increments are relevant with respect to FILTER,
they are added to Exploration (step 16-18). Finally if s is relevant with respect
to FILTER, it is added to Solution (step 21).

The difference between the algorithm in [CFRD06] and the algorithm pre-
viously presented is the addition of the function FILTER that allows frequent
concepts to be filtered and exploration to be stopped. If function FILTER al-
ways returns (KEEP = true, CONTINUE=true), then all frequent concepts
are eventually computed.

3.3 Comparison with Bordat’s algorithm

The algorithm presented in the previous section is based on Bordat’s algorithm.
Like in Bordat’s version, our algorithm starts by exploring the top concept. Then
for each concept s explored, the subconcepts of s are computed; this corresponds
to the computation of incrs. Our algorithm uses the same data structure to rep-
resent Solution, i.e. a trie. The differences between our algorithm and Bordat’s
are: 1) the strategy of exploration, 2) the data structure of Exploration and
3) taking into account the taxonomy.

In our algorithm,

1. we first explore concepts in Exploration with the largest extent. Thus, it is
a top-down exploration of the concept lattice. Contrary to Bordat, it avoids
to test if a concept has already been found when it is added to Solution.

2. Whereas in Bordat’s algorithm Exploration is represented by a queue that
contains subconcepts to explore, in our version the data structure of Ex-
ploration is a triple: ((exts → X), intp(s), incrp(s)) where incrp(s) avoids
to test all attributes of the context to compute increments of s. Indeed, if
an increment X is not relevant for c it cannot be relevant for s, because
exts ⊂ extp(s) and thus (exts ∩ ext(X)) ⊂ (extp(s) ∩ ext(X)). Thus, the
relevant increments of the predecessor of s are stored in incrp(s) and are
potential increments of s. In Exploration, a concept cannot be represented
several times. When a triple representing a concept c is added to Explo-
ration, if c is yet represented in Exploration, the new triple erases the
previous.

3. The attributes can be structured in a taxonomy. This taxonomy is taken into
account during the computation of the increments and the intent. Using ∪tax
instead of the plain set-theoretic union operation allows computed intents to
be without redundancy. Another benefit is that it makes computation more
efficient. For instance, when the taxonomy is deep, a lot of attributes can be
pruned without testing.

Example 6. If we consider the taxonomy of Living Things2 with attributes like
the kingdom (e.g. Animalia, Plantae, ...), the phylum (e.g. chordata), subphylum

2 http://anthro.palomar.edu/animal/table humans.htm



(e.g. Vertebrata), ..., family (e.g. hominidae), genus (e.g. homo), and species (e.g.
sapiens). If a concept c with “Animalia” in its intent is unfrequent, it is useless
to explore subconcepts of c. Using the algorithm, all subconcepts of c due to the
taxonomy are pruned.

4 Specializations of the Parameterized Algorithm

In the previous section, the algorithm presented is parameterized with a filter
function in order to permit the computation of concept-based rules in FCA-Tax.
The advantage of computing the premises of rules in FCA-Tax is to reduce the
size of the rules.

In this section, we show two instanciations of this filter function to learning.
The first one allows sufficient conditions to be computed. In this case, a learning
objective is expressed as positive examples, which are themselves expressed by
their intent. Thus, sufficient conditions are premises of rules where the conclusion
(the target), T , represents the positive examples. In other words, we search rules
like: X → T . The second one allows incompatible conditions to be computed.
In this case, a learning objective is expressed as negative examples, which are
themselves expressed by their intent. Thus, incompatible conditions are premises
of rules where the conclusion (the target), T , is the opposite of the intent of the
negative examples. In other words, we search rules like: X → ¬T .

4.1 Computing sufficient conditions

In the generation of sufficient conditions, the learning objective, T , is the tar-
get of the rules to be learned. For computing sufficient conditions, one must
determine what conjunctions of attributes, P , implies T , i.e. the intents P of
concepts such that the rule P → T has a support and a confidence greater than
the thresholds min sup and min conf . Sufficient conditions can be computed
with the algorithm described in Section 3 that filters all frequent concepts of a
context, by instanciating the filter function with:

FILTERsc(exts, extT ) = (KEEP = sup(ints → T ) ≥ min sup ∧
conf(ints → T ) ≥ min conf,

CONTINUE = sup(ints → T ) ≥ min sup)

It implies three possible behaviours of the algorithm.

1. The concept s is relevant, i.e. the rule ints → T has a support and a con-
fidence greater than the thresholds. s is a solution and has to be kept,
and its subconcepts are potential solutions and have to be explored. Thus
FILTERsc(exts) returns (true, true).

2. The concept s has a support greater than min sup but a confidence lower
than min conf . s is not a solution but the confidence is not monotonous and
thus subconcepts of s can be solutions. FILTERsc(exts) returns (false, true).



3. The concept s has a support lower than min sup. s is not a solution. As the
support is monotonous, i.e. the support of a subconcept of s is lower than
the support of s, subconcepts of s cannot be solutions. FILTERsc(exts)
returns (false, false).

The definition of FILTERsc(exts, extT ) given previously can be expressed in
terms of extent by simply applying the definitions of support and confidence
seen in Section 2. The filter function can be defined by :

FILTERsc(exts) = (KEEP = ‖exts ∩ extT ‖ ≥ min sup ∧
‖exts ∩ extT ‖
‖exts‖

≥ min conf,

CONTINUE = ‖exts ∩ extT ‖ ≥ min sup)

Note that it is easy to use others statistical indicators like lift or conviction, by
adding conditions in the evaluation of KEEP.

4.2 Computing incompatible conditions

In the case of incompatible conditions, the learning objective, T , is the negation
of the target of the rules to be learned. For computing incompatible conditions,
one must determine what conjunctions of attributes, P , implies ¬T , i.e. the
intents P of concepts such that the rule P → ¬T has a support and a confidence
greater than the thresholds min sup and min conf . Incompatible conditions can
be computed with the algorithm described in Section 3 that filters all frequent
concepts of a context, by instanciating the filter function with:

FILTERic(exts, extT ) = (KEEP = sup(ints → ¬T ) ≥ min sup ∧
conf(ints → ¬T ) ≥ min conf,

CONTINUE = sup(ints → ¬T ) ≥ min sup)

This can be expressed in terms of extents, using the definitions of support and
confidence. In terms of extent, the filter function to compute incompatible con-
ditions can be defined by :

FILTERic(exts, extT ) = (KEEP = ‖exts ∩ (O \ extT )‖ ≥ min sup ∧
‖exts ∩ (O \ extT )‖

‖exts‖
≥ min conf,

CONTINUE = ‖exts ∩ (O \ extT )‖ ≥ min sup)

The behaviour of this algorithm is the same as for sufficient conditions.

5 Experiments

The algorithm is implemented in CAML (a functional programming language of
the ML family) inside the Logic File System LISFS [PR03]. LISFS implements



the notion of Logical Information Systems (LIS) as a native Linux file system.
Logical Information Systems (LIS) are based on LCA. In LISFS, attributes can
be ordered to create a taxonomy (logical ordering). The data structures which are
used allow taxonomies to be easily manipulated. For more details see [PR03]. We
ran experiments on an Intel(R) Pentium(R) M processor 2.00GHz with Fedora
Core release 4, 1GB of main memory.

The experimental objectives are 1) to measure the gain in space due to the
elimination of redundancy, 2) to measure the overhead in time of taking care
of the taxonomy, 3) to assess the relevance of the computed rules, and 4) to
compare the overall algorithm with respect to other algorithms that do not take
care of taxonomies.

– The first and second objectives have been first examined in a previous article
on computing frequent concepts. Indeed, redundancy in rules is the same
as redundancy in frequent concepts. To this aim we have programmed a
variant of our algorithm which does not take care of the taxonomy. We have
measured the gain in space using a context of Java methods in which the
type hierarchy is the main source of the taxonomy. In the following we recall
figures when necessary.

– The third objective needs a qualitative evaluation of the computed rules.
This is a difficult question, for which we have preleminary results. We have
replayed this experiments with the parameterized algorithm for computing
rules and evaluating them.

– The last objective needs to compare our parameterized algorithm with other,
efficient, algorithms. We have chosen to compare with Pasquier et al.’s al-
gorithm using the contexts they are using in their article. In particular, we
present data computed for the context MUSHROOMS.

Java context
We test the parameterized algorithm with the Java context3 taken from [SR06].

This context contains 5 526 objects which are the methods of java.awt. Each
method is described by its input and output types, visibility modifiers, excep-
tions, keywords extracted from its identifiers, and keywords from its comments.
The context has 1 624 properties, and yields about 135 000 concepts. The tax-
onomy is derived for the largest part from the class inheritance graph, and for a
smaller part from a taxonomy of visibility modifiers that is predefined in Java.

For the first experiment on the Java context, we choose to measure the com-
putation time of the frequent concepts, in order to show the impact of the tax-
onomy on the computation. For instance, when min sup = 5%, 189 frequent
concepts are computed in 8s taking care of the taxonomy, whereas they are
computed in 16s without taking it into account. When min sup = 2.5%, 2299
frequent concepts are computed in 55s taking care of the taxonomy, whereas
they are computed in 54s without taking it into account. It is explained by the
fact that the Java context has few very frequent concepts. Thus pruning using

3 Available on the web at http://lfs.irisa.fr/demo-area/awt-source/



the taxonomy when min sup = 5% occurs very soon. Indeed, it occurs before
exploring the details of the Java class hierarchy. With this context taking into
account the taxonomy allows the number of irrelevant attributes in the intents
to be reduced of 39%

In a second experiment, we compute the premises of two rules about the set
and get methods (e.g. setValue, getValue, setName, getName). The target is the
set of methods containing the keyword “set” in their name. For min sup = 5%
and min conf = 80% we find 6 rules that underline that the methods with the
keyword “set” in their name, generally have the properties: to be in public access,
to return void and to contain the keyword “sets” in the comments. The second
target is methods containing the keyword “get” in their name. Formin sup = 5%
and min conf = 80% we find 5 rules that underline that the methods with the
keyword “get” in their name, generally have the properties: to be in public access,
to return integer and to contain the keyword “returns” in the comments. Note
that it is not possible to choose freely the support of a rule. This is because
the support of a rule cannot be greater than the support of its premises or
conclusions.

Mushroom context
In order to compare our algorithm with Pasquier et al.’s algorithm, we evaluate

it on the mushroom benchmark4. It contains description of mushrooms with
properties like whether the mushroom is edible or poisonous, the ring number,
the veil color, etc. With this kind of data, we can mine the properties implying
that a muhsroom is poisonous. We find 7 premises with min conf greater than
50%, min sup greater than 40% for the target class=POISONOUS. We can
deduce that we have to be very careful about mushrooms with partial veil, free
gill attachement and only one ring.

For this context, execution times to computing frequent concepts are of the
same order than the execution times on the same context of Pasquier’s algorithm.
For this comparison, we used the figures published by Pasquier in his PhD thesis
([Pas00]).

6 Conclusion

In this article we have proposed a parameterized algorithm with a filter func-
tion to explore frequent concepts in a context with taxonomy in order to learn
association rules. We have described how to instantiate the filter function in
order to find premises of rules where the target are positive examples (sufficient
conditions) and negative examples (incompatible conditions). Then, experiments
have shown that, in practice, taking a taxonomy into account does not negatively
impact the performance and can make the computation more efficient.

The advantage of the presented method is to avoid redundancy in the intent
of the computed frequent concepts thanks to the taxonomy. The resulting rules
are therefore shorter and more relevant.

4 Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/
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Mathématiques, Informatiques et Sciences Humaines, 24(94):31–47, 1986.
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