Skip to main content

Characterizing Minimal Interval Completions

Towards Better Understanding of Profile and Pathwidth (Extended Abstract)

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

Minimal interval completions of graphs are central in understanding two important and widely studied graph parameters: profile and pathwidth. Such understanding seems necessary to be able to attack the problem of computing these parameters. An interval completion of a given graph is an interval supergraph of it on the same vertex set, obtained by adding edges. If no subset of the added edges can be removed without destroying the interval property, we call it a minimal interval completion. In this paper, we give the first characterization of minimal interval completions. We present a polynomial time algorithm, for deciding whether a given interval completion of an arbitrary graph is minimal. If the interval completion is not minimal the algorithm can be used to extract a minimal interval completion that is a subgraph of the given interval completion.

This work is supported by the Research Council of Norway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1-2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Discrete Mathematics 306(3), 337–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Booth, K., Leuker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    MATH  Google Scholar 

  4. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34(3), 313–356 (2002)

    Article  Google Scholar 

  6. Fekete, S.P., Schepers, J.: A combinatorial characterization of higher-dimensional orthogonal packing. Math. Oper. Res. 29(2), 353–368 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    Google Scholar 

  9. George, A., Liu, J.W.: Computer Solution of Large Sparse Positive Definite. Prentice-Hall series in computational mathematics. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  10. Goldberg, P.W., et al.: Four strikes against physical mapping of dna. Journal of Computational Biology 2(1), 139–152 (1995)

    Article  Google Scholar 

  11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  12. Gustedt, J.: On the pathwidth of chordal graphs. Discrete Appl. Math. 45(3), 233–248 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heggernes, P., et al.: Minimal interval completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Heggernes, P., et al.: Characterizing minimal interval completions. Towards better understanding of profile and pathwidth. Technical Report LIFO Research Report RR 2006-09, LIFO - University of Orleans, France (2006)

    Google Scholar 

  15. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for the minimum fill-in problem. SIAM J. Comput. 30(4), 1067–1079 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peyton, B.W.: Minimal orderings revisited. SIAM J. Matrix Anal. Appl. 23(1), 271–294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)

    Article  MathSciNet  Google Scholar 

  19. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2, 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Heggernes, P., Suchan, K., Todinca, I., Villanger, Y. (2007). Characterizing Minimal Interval Completions. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics