Skip to main content

Compact Forbidden-Set Routing

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

  • 1247 Accesses

Abstract

We study labelling schemes for X-constrained path problems. Given a graph (V,E) and \(X\subseteq V\), a path is X-constrained if all intermediate vertices avoid X. We study the problem of assigning labels J(x) to vertices so that given {J(x):x ∈ X} for any \(X\subseteq V\), we can route on the shortest X-constrained path between x,y ∈ X. This problem is motivated by Internet routing, where the presence of routing policies means that shortest-path routing is not appropriate. For graphs of tree width k, we give a routing scheme using routing tables of size O(k 2log2 n). We introduce m-clique width, generalizing clique width, to show that graphs of m-clique width k also have a routing scheme using size O(k 2log2 n) tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures, Crete Island, Greece, pp. 1–10. ACM Press, New York (2001), doi:10.1145/378580.378581

    Chapter  Google Scholar 

  2. Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations in inter-domain routing. Technical report, USC/ISI (1996)

    Google Scholar 

  3. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdomain routing. IEEE/ACM Trans. Netw. 10(2), 232–243 (2002)

    Article  Google Scholar 

  4. Feigenbaum, J., et al.: Subjective-cost policy routing. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 174–183. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded clique-width. Discrete Applied Mathematics 131(1), 129–150 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gupta, A., Kumar, A., Thorup, M.: Tree based mpls routing. In: SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and architectures, San Diego, California, USA, pp. 193–199. ACM Press, New York (2003), doi:10.1145/777412.777443

    Chapter  Google Scholar 

  7. Courcelle, B.: Graph decompositions. Chapter of a book in preparation (2006), Available at http://www.labri.fr/perso/courcell/Textes/ChapitreDecArbos.pdf

  8. Arnborg, S., et al.: An algebraic theory of graph reduction. J. ACM 40(5), 1134–1164 (1993), doi:10.1145/174147.169807

    Article  MATH  MathSciNet  Google Scholar 

  9. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)

    Google Scholar 

  10. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wanke, E.: k-nlc graphs and polynomial algorithms. Discrete Applied Mathematics 54(2-3), 251–266 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1-3), 77–114 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discret. Math. 5(4), 596–603 (1992), doi:10.1137/0405049

    Article  MATH  MathSciNet  Google Scholar 

  14. Fellows, M.R., et al.: Clique-width minimization is np-hard. In: STOC 2006, Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, Seattle, Washington, ACM Press, New York (2006)

    Google Scholar 

  15. Oum, S.-i.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Courcelle, B., Twigg, A. (2007). Compact Forbidden-Set Routing. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics