Abstract
Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)
Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to effi- cient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: Proc. 46th FOCS, pp. 469–478 (2005)
Bacon, D., Childs, A.M., van Dam, W.: Optimal measurements for the dihedral hidden subgroup problem. Chicago J. Th. Comp. Sci. 2 (2006)
Bacon, D., Chuang, I.L., Harrow, A.W.: Efficient quantum circuits for Schur and Clebsch-Gordan transforms. quant-ph/0407082
Bacon, D., Chuang, I.L., Harrow, A.W.: The quantum Schur transform: I. Efficient qudit circuits. To appear in Proc. 18th SODA, available at quant-ph/0601001 (2007)
Barenco, A., et al.: Stabilisation of quantum computations by symmetrisation. SIAM J. Comput (1997) (1541)-1557
Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proc. 29th STOC, pp. 48–53 (1997)
Boneh, R., Lipton, R.: Quantum cryptanalysis of hidden linear functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer, Heidelberg (1995)
Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and clawfree functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998)
Buhrman, H., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16) (2001)
Childs, A.M., Wocjan, P.: On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems, quant-ph/0510185
Coppersmith, D.: An approximate Fourier transform useful in quantum factoring. Technical Report RC 19642, IBM Research Division, Yorktown Heights, NY, quant-ph/0201067 (1994)
Christandl, M., Mitchison, G.: The spectra of density operators and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261(3), 789–797 (2006)
Ettinger, M., Høyer, P.: A quantum observable for the graph isomorphism problem, quant-ph/9901029
Ettinger, M., Høyer, P., Knill, E.: Hidden subgroup states are almost orthogonal, quant-ph/9901034
Friedl, K., et al.: Hidden translation and orbit coset in quantum computing. In: Proc. 35th STOC, pp. 1–9 (2003)
Gavinsky, D.: Quantum solution to the hidden subgroup problem for poly-near- Hamiltonian groups. Quant. Inf. Comp. 4, 229–235 (2004)
Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)
Grigni, M., et al.: Quantum mechanical algorithms for the nonabelian hidden subgroup problem. Combinatorica 24, 137–154 (2004)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th STOC, pp. 212–219 (1996)
Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In: Proc. 34th STOC, pp. 653–658 (2002)
Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Proc. 37th STOC, pp. 468–474 (2005)
Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc. 41st FOCS, pp. 515–525 (2000)
Hallgren, S., et al.: Limitations of quantum coset states for graph isomorphism. In: Proc. 38th STOC, pp. 604–617 (2006)
Hallgren, S., Russell, A., Ta-Shma, A.: The hidden subgroup problem and quantum computation using group representations. In: Proc. 32nd STOC, pp. 627–635 (2000)
Harrow, A.W.: Applications of coherent classical communication and the Schur transform to quantum information theory. Ph.D. thesis, MIT (2005)
Hayashi, M., Matsumoto, K.: Quantum universal variable-length source coding. Phys. Rev. A 66, 022311 (2002)
Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem. Int. J. Found. Comp. Sci. 14, 723–739 (2003)
Kerov, S.: Gaussian limit for the Plancherel measure of the symmetric group. Comptes Rendus Acad. Sci. Paris, Sér. I 316, 303–308 (1993)
Keyl, M., Werner, R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)
Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005)
Moore, C., Rockmore, D.N., Russell, A.: Generic quantum Fourier transforms. In: Proc. 15th SODA, pp. 778–787 (2004)
Moore, C., et al.: The hidden subgroup problem in affine groups: Basis selection in Fourier sampling. In: Proc. 15th SODA, pp. 1113–1122 (2004)
Moore, C., Russell, A., Schulman, L.J.: The symmetric group defies strong Fourier sampling. In: Proc. 46th FOCS, pp. 479–490 (2005)
Radhakrishnan, J., Rötteler, M., Sen, P.: On the power of random bases in Fourier sampling: Hidden subgroup problem in the Heisenberg group. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1399–1411. Springer, Heidelberg (2005)
Regev, O.: Quantum computation and lattice problems. In: Proc. 43rd FOCS, pp. 520–529 (2002)
Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space, quant-ph/0406151
Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for the computation of the unit group of a number field. In: Proc. 37th STOC, pp. 475–480 (2005)
Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem, quant-ph/0512085
Serre, J.P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, New York (1977)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)
Stanley, R.P.: Theory and application of plane partitions. Studies in Appl. Math. 1, 167-187 and 259-279 (1971)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Childs, A.M., Harrow, A.W., Wocjan, P. (2007). Weak Fourier-Schur Sampling, the Hidden Subgroup Problem, and the Quantum Collision Problem. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-70918-3_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70917-6
Online ISBN: 978-3-540-70918-3
eBook Packages: Computer ScienceComputer Science (R0)