Skip to main content

On the Size of the Universal Automaton of a Regular Language

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

The universal automaton of a regular language is the maximal NFA without merging states that recognizes this language. This automaton is directly inspired by the factor matrix defined by Conway thirty years ago. We prove in this paper that a tight bound on its size with respect to the size of the smallest equivalent NFA is given by Dedekind’s numbers. At the end of the paper, we deal with the unary case. Chrobak has proved that the size of the minimal deterministic automaton with respect to the smallest NFA is tightly bounded by the Landau’s function; we show that the size of the universal automaton is in this case an exponential of the Landau’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Câmpeanu, C., Sântean, N., Yu, S.: Mergible states in large nfa. Theoret. Comput. Sci. 330(1), 23–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Champarnaud, J.-M., Coulon, F.: NFA reduction algorithms by means of regular inequalities. Theoret. Comput. Sci. 327(3), 241–253 (2004)

    Article  MathSciNet  Google Scholar 

  3. Chrobak, M.: Finite automata and unary languages (Errata in Theoret. Comput. Sci. 302, 497–498 (2003)). Theoret. Comput. Sci. 47 47(2), 497–498 (1986)

    MathSciNet  Google Scholar 

  4. Conway, J.H.: Regular algebra and finite machines. Mathematics series. Chapmann and Hall, London (1971)

    MATH  Google Scholar 

  5. Grunsky, I., Kurganskyy, O., Potapov, I.: On a maximal nfa without mergible states. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 202–210. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. In: Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), pp. 189–196. Academic Press, New York (1971)

    Google Scholar 

  7. Ilie, L., Yu, S.: Reducing NFAs by invariant equivalences. Theoret. Comput. Sci. 306(1-3), 373–390 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117–1141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Korshunov, A.D.: The number of monotone Boolean functions. Problemy Kibernet. 38, 5–108 (1981)

    MathSciNet  Google Scholar 

  10. Lombardy, S.: On the construction of reversible automata for reversible languages. In: Widmayer, P., et al. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Lombardy, S., Sakarovitch, J.: Star height of reversible languages and universal automata. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 76–90. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Sakarovitch, J.: Éléments de théorie des automates (English translation to appear, Cambridge University Press). In: Les classiques de l’informatique, Vuibert, Paris (2003)

    Google Scholar 

  13. Wiedemann, D.: A computation of the eighth Dedekind number. Order 8(1), 5–6 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lombardy, S. (2007). On the Size of the Universal Automaton of a Regular Language. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics