Abstract
The universal automaton of a regular language is the maximal NFA without merging states that recognizes this language. This automaton is directly inspired by the factor matrix defined by Conway thirty years ago. We prove in this paper that a tight bound on its size with respect to the size of the smallest equivalent NFA is given by Dedekind’s numbers. At the end of the paper, we deal with the unary case. Chrobak has proved that the size of the minimal deterministic automaton with respect to the smallest NFA is tightly bounded by the Landau’s function; we show that the size of the universal automaton is in this case an exponential of the Landau’s function.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Câmpeanu, C., Sântean, N., Yu, S.: Mergible states in large nfa. Theoret. Comput. Sci. 330(1), 23–34 (2005)
Champarnaud, J.-M., Coulon, F.: NFA reduction algorithms by means of regular inequalities. Theoret. Comput. Sci. 327(3), 241–253 (2004)
Chrobak, M.: Finite automata and unary languages (Errata in Theoret. Comput. Sci. 302, 497–498 (2003)). Theoret. Comput. Sci. 47 47(2), 497–498 (1986)
Conway, J.H.: Regular algebra and finite machines. Mathematics series. Chapmann and Hall, London (1971)
Grunsky, I., Kurganskyy, O., Potapov, I.: On a maximal nfa without mergible states. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 202–210. Springer, Heidelberg (2006)
Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. In: Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa, 1971), pp. 189–196. Academic Press, New York (1971)
Ilie, L., Yu, S.: Reducing NFAs by invariant equivalences. Theoret. Comput. Sci. 306(1-3), 373–390 (2003)
Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6), 1117–1141 (1993)
Korshunov, A.D.: The number of monotone Boolean functions. Problemy Kibernet. 38, 5–108 (1981)
Lombardy, S.: On the construction of reversible automata for reversible languages. In: Widmayer, P., et al. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002)
Lombardy, S., Sakarovitch, J.: Star height of reversible languages and universal automata. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 76–90. Springer, Heidelberg (2002)
Sakarovitch, J.: Éléments de théorie des automates (English translation to appear, Cambridge University Press). In: Les classiques de l’informatique, Vuibert, Paris (2003)
Wiedemann, D.: A computation of the eighth Dedekind number. Order 8(1), 5–6 (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Lombardy, S. (2007). On the Size of the Universal Automaton of a Regular Language. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-70918-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70917-6
Online ISBN: 978-3-540-70918-3
eBook Packages: Computer ScienceComputer Science (R0)