Skip to main content

Multiobjective Evolutionary Algorithms on Complex Networks

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4403))

Included in the following conference series:

Abstract

Spatially structured populations have been used in evolutionary computation for many years. Somewhat surprisingly, in the multiobjective optimization domain, very few spatial models have been proposed. In this paper, we introduce a new multiobjective evolutionary algorithm on complex networks. Here, the individuals in the evolving population are mapped onto the nodes of alternative complex networks – regular, small-world, scale-free and random. A selection regime based on a non-dominance rating and a crowding mechanism guides the evolutionary trajectory. Our model can be seen as an extension of the standard cellular evolutionary algorithm. However, the dynamical behaviour of the evolving population is constrained by the particular network architecture. An important contribution of this paper is the detailed analysis of the impact that the structural properties of the network – node degree distribution, characteristic path length and clustering coefficient – have on the behaviour of the evolutionary algorithm using benchmark bi-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C.C., Veldhuizen, D.V., Lamont, G.: EA for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  2. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, Chichester (2001)

    MATH  Google Scholar 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

  5. Knowles, J.D., Corne, D.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000), citeseer.ist.psu.edu/knowles99approximating.html

    Article  Google Scholar 

  6. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Transactions on Evolutionary Computation 9, 126–142 (2005)

    Article  Google Scholar 

  7. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  8. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 144–173 (2003)

    Article  Google Scholar 

  9. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  10. Dorogovtsev, S., Mendes, J.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  11. Strogatz, S.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  12. Watts, D.: Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton (1999)

    Google Scholar 

  13. Kirley, M.: Evolutionary minority games with small-world interactions. Physica A: Statistical Mechanics 365, 521–528 (2006)

    Article  Google Scholar 

  14. Lieberman, E., Hauert, C., Nowak, M.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005)

    Article  Google Scholar 

  15. Giacobini, M., Tomassini, M., Tettamanzi, A.: Takeover time curves in random and small-world structured populations. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’05), pp. 1133–1340 (2005)

    Google Scholar 

  16. Giacobini, M., Tomassini, M., Tettamanzi, A., Alba, E.: Selection intensity in cellular evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary Computation 9, 489–505 (2005)

    Article  Google Scholar 

  17. Sarma, J., De Jong, K.: An analysis of the effects of neighborhood size and shape on local selection algorithms. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN IV. LNCS, vol. 1141, pp. 236–244. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Laumanns, M., Rudolph, G., Schwefel, H.P.: A spatial predator-prey approach to multi-objective optimization: A preliminary study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN V. LNCS, vol. 1498, pp. 241–249. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Kirley, M.: A cellular genetic algorithm with disturbances: Optimization using dynamic spatial interactions. Journal of Heuristics 8, 321–342 (2002)

    Article  MATH  Google Scholar 

  20. Kirley, M.: M.E.A.: A metapopulation evolutionary algorithm for multi-objective optimisation problems. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, pp. 949–956 (2001)

    Google Scholar 

  21. Mehnen, J., Michelitsch, T., Schmitt, K., Kohlen, T.: pMOHypEA: Parallel evolutionary multiobjective optimization using hypergraphs. Technical Report Reihe CI-189/04, SFB 531, ISSN 1433-3325, University of Dortmund (2004)

    Google Scholar 

  22. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–60 (1959)

    Google Scholar 

  23. Watts, D., Stogatz, S.: Collective dynamics of “small-world” networks. Nature 393, 440–441 (1998)

    Article  Google Scholar 

  24. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  25. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, G.V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Kirley, M., Stewart, R. (2007). Multiobjective Evolutionary Algorithms on Complex Networks. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics