Skip to main content

A Multi-objective Evolutionary Approach for Phylogenetic Inference

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4403))

Included in the following conference series:

Abstract

The phylogeny reconstruction problem consists of determining the most accurate tree that represents evolutionary relationships among species. Different criteria have been employed to evaluate possible solutions in order to guide a search algorithm towards the best tree. However, these criteria may lead to distinct phylogenies, which are often conflicting among them. In this context, a multi-objective approach can be useful since it could produce a spectrum of equally optimal trees (Pareto front) according to all criteria. We propose a multi-objective evolutionary algorithm, named PhyloMOEA, which employs the maximum parsimony and likelihood criteria to evaluate solutions. PhyloMOEA was tested using four datasets of nucleotide sequences. This algorithm found, for all datasets, a Pareto front representing a trade-off between the criteria. Moreover, SH-test showed that most of solutions have scores similar to those obtained by phylogenetic programs using one criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Handl, J., Kell, D., Knowles, J.: Multiobjective Optimization in Computational Biology and Bioinformatics. IEEE Transactions on Computational Biology and Bioinformatics (To appear, 2006)

    Google Scholar 

  2. Huelsenbeck, J.: Performance of Phylogenetic Methods in Simulation. Systematic Biology 44, 17–48 (1995)

    Article  Google Scholar 

  3. Kuhner, M., Felsenstein, J.: A Simulation Comparison of Phylogeny Algorithms under Equal and Unequal Evolutionary Rate. Molecular Biology and Evolution 11, 459–468 (1994)

    Google Scholar 

  4. Tateno, Y., Takezaki, N., Nei, M.: Relative Efficiences of the Maximum-Likelihood, Neighbor-Joining, and Maximum Parsimony Methods when Substitution Rate Varies with Site. Molecular Biology and Evolution 11, 261–267 (1994)

    Google Scholar 

  5. Rokas, A., Wiliams, B., King, N., Carroll, S.: Genome-Scale Approaches to Resolving Incongrounce in Molecular Phylogenies. Nature 425(23), 798–804 (2003)

    Article  Google Scholar 

  6. Poladian, L., Jermiin, L.: Multi-Objective Evolutionary Algorithms and Phylogenetic Inference with Multiple Data Sets. Soft Computing 10(4), 359–368 (2006)

    Article  Google Scholar 

  7. Fitch, W.: Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Zoology 20(4), 406–416 (1972)

    Article  Google Scholar 

  8. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  9. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India (2000)

    Google Scholar 

  10. Felsenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2004)

    Google Scholar 

  11. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogeny Reconstruction. In: Molecular Systematics, 3rd edn., pp. 407–514. Sinauer, Sunderland (1996)

    Google Scholar 

  12. Saitou, N., Nei, M.: The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

  13. Cavalli-Sforza, L., Edwards, A.: Phylogenetic Analysis: Models and Estimation Procedures. Evolution 21(3), 550–570 (1967)

    Article  Google Scholar 

  14. Sankoff, D.: Simultaneous Solution of the RNA Folding, Alignment and Proto-Sequence Problems. SIAM Journal on Applied Mathematics 45(5), 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goloboff, P.: NONA (no name) ver. 2. Published by the author (1999)

    Google Scholar 

  16. Guindon, S., Gascuel, O.: A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology 5(52), 696–704 (2003)

    Article  Google Scholar 

  17. Stamatakis, A., Meier, H.: New Fast and Accurate Heuristics for Inference of Large Phylogenetic Trees. In: 18th IEEE/ACM International Parallel and Distributed Processing Symposium (IPDPS2004), ACM Press, New York (2004)

    Google Scholar 

  18. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  19. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  20. Katoh, K., Kuma, K., Miyata, T.: Genetic Algorithm-Based Maximum-Likelihood Analysis for Molecular Phylogeny. Journal of Molecular Evolution 53, 477–484 (2001)

    Article  Google Scholar 

  21. Lemmon, A.R., Milinkovitch, M.C.: The Metapopulation Genetic Algorithm: An Efficient Solution for the Problem of Large Phylogeny Estimation. Proceedings of the National Academy of Sciences 99, 10516–10521 (2002)

    Article  Google Scholar 

  22. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference Using Nucleotide Sequence Data. Molecular Biology and Evolution 15(3), 277–283 (1998)

    Google Scholar 

  23. Moilanen, A.: Searching for Most Parsimonious Trees with Simulated Evolutionary Optimization. Cladistics 15, 39–50 (1999)

    Article  Google Scholar 

  24. Cotta, C., Moscato, P.: Inferring Phylogenetic Trees Using Evolutionary Algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 720–729. Springer, Heidelberg (2002)

    Google Scholar 

  25. Felsenstein, J.: PHYLIP (Phylogeny Inference Package) (2000)

    Google Scholar 

  26. Swofford, D.: PAUP* Phylogenetic Analisys Using Parsimony, CSIT Florida State University (2000)

    Google Scholar 

  27. Jin, L., Nei, M.: Limitations of the Evolutionary Parsimony Method of Phylogenetic Analysis. Molecular Biology and Evolution 7, 82–102 (1990)

    Google Scholar 

  28. Forster, M., Pick, A., Raitner, M., Bachmaier, C.: GTL - Graph Template Library Documentation. University of Pasdau (2004)

    Google Scholar 

  29. Yang, Z.: Maximum-Likelihood Estimation of Phylogeny from DNA Sequences when Substitution Rates Differ over Sites. Molecular Biology and Evolution 10(6), 1396–1401 (1993)

    Google Scholar 

  30. Ingman, M., Gyllensten, U.: mtDB: Human Mitochondrial Genome Database, a Resource for Population Genetics and Medical Sciences. Nucleic Acids Research 34, D749–D751 (2006)

    Article  Google Scholar 

  31. Cole, J., Chai, B., Farris, R., Wang, K.S., McGarrell, D., Garrity, G., Tiedje, J.: The Ribosomal Database Project (RDP-II): Sequences and Tools for High-throughput rRNA Analysis. Nucleic Acids Research 33, D294–D296 (2005)

    Article  Google Scholar 

  32. Gascuel, O.: BIONJ: An Improved Version of the NJ Algorithm Based on a Sample Model of Sequence Data. Molecular Biology and Evolution 14(7), 685–695 (1997)

    Google Scholar 

  33. Hasegawa, M., Kishino, H., Yano, T.: Dating of the Human–Ape Splitting by a Molecular Clock of Mitochondrial DNA. Journal of Molecular Evolution 22, 160–174 (1985)

    Article  Google Scholar 

  34. Shimodaira, H., Hasegawa, M.: Likelihood-Based Tests of Topologies in Phylogenetics. Molecular Biology and Evolution 16(8), 111–1116 (1999)

    Google Scholar 

  35. Yang, Z.: PAML: A Program Package for Phylogenetic Analysis by Maximum Likelihood. Computer Applications in Biosciences 13(5), 555–556 (1997)

    Google Scholar 

  36. Yang, Z.: Maximum Likelihood Estimation on Large Phylogenies and Analysis of Adaptative Evolution in Human Influenza Virus A. Journal of Molecular Evolution 51(51), 423–432 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Cancino, W., Delbem, A.C.B. (2007). A Multi-objective Evolutionary Approach for Phylogenetic Inference. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics