Abstract
This paper addresses the problem of articulated motion tracking from image sequences. We describe a method that relies on both an explicit parameterization of the extremal contours and on the prediction of the human boundary edges in the image. We combine extremal contour prediction and edge detection in a non linear minimization process. The error function that measures the discrepancy between observed image edges and predicted model contours is minimized using an analytical expression of the Jacobian that maps joint velocities onto extremal contour velocities. In practice, we model people both by their geometry (truncated elliptic cones) and their articulated structure – a kinematic model with 40 rotational degrees of freedom. To overcome the flaws of standard edge detection, we introduce a model-based anisotropic Gaussian filter. The parameters of the anisotropic Gaussian are automatically derived from the kinematic model through the prediction of the extremal contours. The theory is validated by performing full body motion capture from six synchronized video sequences at 30 fps without markers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, A., Triggs, B.: Learning to track 3d human motion from silhouettes. In: International Conference on Machine Learning, Banff, July 2004, pp. 9–16 (2004), http://lear.inrialpes.fr/pubs/2004/AT04b
Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Computer Vision and Pattern Recognition, pp. 2126–2133 (2000)
Lan, X., Huttenlocher, D.P.: A unified spatio-temporal articulated model for tracking. In: Computer Vision and Pattern Recognition, pp. 722–729 (2004)
Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision 56(3), 179–194 (2004)
Sminchisescu, C., Triggs, B.: Estimating articulated human motion with covariance scaled sampling. International Journal of Robotics Research 22(6), 371–379 (2003)
Delamarre, Q., Faugeras, O.: 3d articulated models and multi-view tracking with physical forces. Computer Vision and Image Understanding 81, 328–357 (2001)
Gavrila, D.M., Davis, L.S.: 3d model-based tracking of humans in action: a multi-view approach. In: Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 73–80 (1996)
Ilic, S., Salzmann, M., Fua, P.: Implicit surfaces make for better silhouettes. In: European Conference on Computer Vision, vol. 1, pp. 1135–1141 (2005)
Kakadiaris, I., Metaxas, D.: Model-based estimation of 3d human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1453–1459 (2000)
Drummond, T., Cipolla, R.: Real-time visual tracking of complex structures. IEEE Trans. Pattern Analalysis Machine Intelligence 24(7), 932–946 (2002)
Martin, F., Horaud, R.: Multiple camera tracking of rigid objects. International Journal of Robotics Research 21(2), 97–113 (2002)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)
Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. In: European Conference on Computer Vision, pp. 3–18 (1992), citeseer.ist.psu.edu/perona92steerablescalable.html
Geusebroek, J.M., Smeulders, A.W.M., van de Weijer, J.: Fast anisotropic gauss filtering. IEEE Trans. Image Processing 12(8), 938–943 (2003)
Ronfard, R.: Region based strategies for active contour models. International Journal of Computer Vision 13(2), 229–251 (1994), http://perception.inrialpes.fr/Publications/1994/Ron94
van de Weijer, J., Gevers, T.: Tensor based feature detection for color images. In: Proc. IS&TSID’s CIC 2004, Scottsdale, Arizona, USA (2004)
Knossow, D., Ronfard, R., Horaud, R., Devernay, F.: Tracking with the kinematics of extremal contours. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 664–673. Springer, Heidelberg (2006), http://perception.inrialpes.fr/Publications/2006/KRHD06
Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Ann Arbor (1994)
Di Zenzo, S.: Note: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33(1), 116–125 (1986)
Koenderink, J.J., van Doorn, A.J.: Receptive field families. Biol. Cybern. 63, 291–297 (1990)
Triggs, B., Sdika, M.: Boundary conditions for young - van vliet recursive filtering. IEEE Transactions on Signal Processing (To appear, 2006)
Young, I.T., van Vliet, L.J.: Recursive implementation of the gaussian filter, signal processing. Signal Processing 44(2), 139–151 (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Knossow, D., van de Weijer, J., Horaud, R., Ronfard, R. (2007). Articulated-Body Tracking Through Anisotropic Edge Detection. In: Vidal, R., Heyden, A., Ma, Y. (eds) Dynamical Vision. WDV WDV 2006 2005. Lecture Notes in Computer Science, vol 4358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70932-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-70932-9_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70931-2
Online ISBN: 978-3-540-70932-9
eBook Packages: Computer ScienceComputer Science (R0)