Skip to main content

Latent Variable Models for Causal Knowledge Acquisition

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4394))

Abstract

We describe statistical models for detecting causality between two events. Our models are kinds of latent variable models, actually expanded versions of the existing statistical co-occurrence models. The (statistical) dependency information between two events needs to be incorporated into causal models. We handle this information via latent variables in our models. Through experiments, we achieved .678 F-measure value for the evaluation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.F.: Recognizing intentions from natural language utterances. In: Brady, M., Berwick, R.C. (eds.) Computational models of discourse, MIT Press, Cambridge (1983)

    Google Scholar 

  2. Chang, D.-S., Choi, K.-S.: Causal relation extraction using cue phrase and lexical pair probabilities. In: Proceedings of the 1st International Joint Conference of Natural Language Processing (IJCNLP-2004), pp. 61–70 (2004)

    Google Scholar 

  3. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proceedings of the 27th. Annual Meeting of the Association for Computational Linguistics (ACL-1989), pp. 76–83 (1989)

    Google Scholar 

  4. Cooper, G., Heckerman, D., Meek, C.: A Bayesian approach to causal discovery. Technical report, Microsoft Research Advanced Technology Division, Microsoft Corporation, Technical Report MSR-TR-97-05 (1997)

    Google Scholar 

  5. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 34, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Garcia, D.: COATIS, an NLP system to locate expressions of actions connected by causality links. In: Proceedings of The 10th European Knowledge Acquisition Workshop, pp. 347–352 (1997)

    Google Scholar 

  8. Girju, R.: Automatic detection of causal relations for question answering. In: Proceedings of Annual Meeting of the Association for Computational Linguistics, Workshop on Multilingual Summarization and Question Answering - Machine Learning and Beyond (2003)

    Google Scholar 

  9. Girju, R., Moldovan, D.: Mining answers for causation questions. In: Proc. The AAAI Spring Symposium on Mining Answers from Texts and Knowledge Bases (2002)

    Google Scholar 

  10. Hobbs, J.R.: Coherence and co-reference. Cognitive Science 1, 67–82 (1979)

    Article  Google Scholar 

  11. Hobbs, J.R.: On the coherence and structure of discourse. Technical report, Technical Report CSLI-85-37, Center for The Study of Language and Information (1985)

    Google Scholar 

  12. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning Journal 42(1), 177–196 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hofmann, T., Puzicha, J.: Statistical models for co-occurrence data. Technical Report AIM-1625, Artificial Intelligence Laboratory, MIT (1998)

    Google Scholar 

  14. Inui, T., Inui, K., Matsumoto, Y.: What kinds and amounts of causal knowledge can be acquired from text by using connective markers as clues? In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 180–193. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Inui, T., Okumura, M.: Investigating the characteristics of causal relations in Japanese text. In: Proceedings of Annual Meeting of the Association for Computational Linguistics, Workshop on Frontiers in Corpus Annotation II: Pie in the Sky, pp. 37–44 (2005)

    Google Scholar 

  16. Khoo, C.S.G., Chan, S., Niu, Y.: Extracting causal knowledge from a medical database using graphical patterns. In: Proceedings of The 38th. Annual Meeting of The Association for Computational Linguistics (ACL-2000), pp. 336–343 (2000)

    Google Scholar 

  17. Mainichi. Mainichi Shimbun CD-ROM version (1995)

    Google Scholar 

  18. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  19. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.M.: Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3), 103–134 (2000)

    Article  MATH  Google Scholar 

  20. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge Universiy Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Pei, J., Han, J., Mortazavi-Asi, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: PrefixSpan: mining sequential patterns efficiently by prefix projected pattern growth. In: Proceedings of 1st Conference of Data Enginnering (ICDE-2001), pp. 215–226 (2001)

    Google Scholar 

  22. Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1995)

    Google Scholar 

  23. Sanchez-Graillet, O., Poesio, M.: Acquiring bayesian networks from text. In: Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC-2004), pp. 955–958 (2004)

    Google Scholar 

  24. Terada, A.: A Study of Text Mining Techniques Using Natural Language Processing. PhD thesis, Tokyo Institute of Technology (2003)

    Google Scholar 

  25. Torisawa, K.: An unsupervised learning method for commonsensical inference rules on events. In: Proceedings of the Second CoLogNet-ElsNET Symposium, pp. 146–153 (2003)

    Google Scholar 

  26. U.S. National Library of Medicine: The MEDLINE database (2001), see also, http://www.ncbi.nlm.nih.gov/PubMed/

  27. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  28. Zhang, N.L., Nielsen, T.D., Jensen, F.V.: Latent variable discovery in classification models. Artificial Intelligence in Medicine 30(3), 283–299 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inui, T., Takamura, H., Okumura, M. (2007). Latent Variable Models for Causal Knowledge Acquisition. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2007. Lecture Notes in Computer Science, vol 4394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70939-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70939-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70938-1

  • Online ISBN: 978-3-540-70939-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics