Skip to main content

Parallel Monte Carlo Approach for Integration of the Rendering Equation

  • Conference paper
Numerical Methods and Applications (NMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4310))

Included in the following conference series:

  • 2317 Accesses

Abstract

This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images.

In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method.

This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.

Supported by the Ministry of Education and Science of Bulgaria under Grand No. I-1405/04 and by FP6 INCO Grand 016639/2005 Project BIS-21++.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dimov, I.T., Gurov, T.V., Penzov, A.A.: A Monte Carlo Approach for the Cook-Torrance Model. In: Li, Z., Vulkov, L.G., WaÅ›niewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 257–265. Springer, Heidelberg (2005)

    Google Scholar 

  2. Dimov, I., et al.: Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals. In: Dimov, I.T., et al. (eds.) NMA 2002. LNCS, vol. 2542, pp. 99–107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Dimov, I.T., Penzov, A.A., Stoilova, S.S.: Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere. In: Boyanov, T., et al. (eds.) NMA 2006. LNCS, vol. 4310, pp. 148–155. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Dutré, P.: Global Illumination Compendium. Script of September 29 2003, http://www.cs.kuleuven.ac.be/~phil/GI/TotalCompendium.pdf

  5. Georgieva, R., Ivanovska, S.: Importance Separation for Solving Integral Equations. In: Lirkov, I., et al. (eds.) LSSC 2003. LNCS, vol. 2907, pp. 144–152. Springer, Heidelberg (2004)

    Google Scholar 

  6. Ivanovska, S., Karaivanova, A.: Parallel Importance Separation for Multiple Integrals and Integral Equations. In: Bubak, M., et al. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 499–506. Springer, Heidelberg (2004)

    Google Scholar 

  7. Karaivanova, A.: Adaptive Monte Carlo methods for numerical integration. Mathematica Balkanica 11, 201–213 (1997)

    MathSciNet  Google Scholar 

  8. Karaivanova, A., Dimov, I.: Error analysis of an adaptive Monte Carlo method for numerical integration. Mathematics and Computers in Simulation 47, 391–406 (1998)

    Article  MathSciNet  Google Scholar 

  9. Kajiya, J.T.: The Rendering Equation, Computer Graphics, vol. Computer Graphics - Proceedings of SIGGRAPH‘86 20(4), 143–150 (1986)

    Article  Google Scholar 

  10. Keller, A.: Quasi-Monte Carlo Methods in Computer Graphics: The Global Illumination Problem. In: Lectures in Applied Mathematics, vol. 32, pp. 455–469 (1996)

    Google Scholar 

  11. Penzov, A.A.: Shading and Illumination Models in Computer Graphics - a literature survey, MTA SZTAKI, Research Report CG-4, Budapest (1992)

    Google Scholar 

  12. Sobol, I.: Monte Carlo Numerical Methods (in Russian). Nauka, Moscow (1975)

    Google Scholar 

  13. Szirmay-Kalos, L.: Monte-Carlo Methods in Global Illumination, Script in WS of, 1999/2000, http://www.fsz.bme.hu/~szirmay/script.pdf

  14. Urena, C.: Computation of Irradiance from Triangles by Adaptive Sampling. Computer Graphics Forum 19(2), 165–171 (2000)

    Article  MATH  Google Scholar 

  15. Veach, E.: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. Dissertation, Stanford University (December 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Todor Boyanov Stefka Dimova Krassimir Georgiev Geno Nikolov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Dimov, I.T., Penzov, A.A., Stoilova, S.S. (2007). Parallel Monte Carlo Approach for Integration of the Rendering Equation. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70942-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70940-4

  • Online ISBN: 978-3-540-70942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics