Abstract
This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images.
In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method.
This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.
Supported by the Ministry of Education and Science of Bulgaria under Grand No. I-1405/04 and by FP6 INCO Grand 016639/2005 Project BIS-21++.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dimov, I.T., Gurov, T.V., Penzov, A.A.: A Monte Carlo Approach for the Cook-Torrance Model. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 257–265. Springer, Heidelberg (2005)
Dimov, I., et al.: Parallel Importance Separation and Adaptive Monte Carlo Algorithms for Multiple Integrals. In: Dimov, I.T., et al. (eds.) NMA 2002. LNCS, vol. 2542, pp. 99–107. Springer, Heidelberg (2003)
Dimov, I.T., Penzov, A.A., Stoilova, S.S.: Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere. In: Boyanov, T., et al. (eds.) NMA 2006. LNCS, vol. 4310, pp. 148–155. Springer, Heidelberg (2007)
Dutré, P.: Global Illumination Compendium. Script of September 29 2003, http://www.cs.kuleuven.ac.be/~phil/GI/TotalCompendium.pdf
Georgieva, R., Ivanovska, S.: Importance Separation for Solving Integral Equations. In: Lirkov, I., et al. (eds.) LSSC 2003. LNCS, vol. 2907, pp. 144–152. Springer, Heidelberg (2004)
Ivanovska, S., Karaivanova, A.: Parallel Importance Separation for Multiple Integrals and Integral Equations. In: Bubak, M., et al. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 499–506. Springer, Heidelberg (2004)
Karaivanova, A.: Adaptive Monte Carlo methods for numerical integration. Mathematica Balkanica 11, 201–213 (1997)
Karaivanova, A., Dimov, I.: Error analysis of an adaptive Monte Carlo method for numerical integration. Mathematics and Computers in Simulation 47, 391–406 (1998)
Kajiya, J.T.: The Rendering Equation, Computer Graphics, vol. Computer Graphics - Proceedings of SIGGRAPH‘86 20(4), 143–150 (1986)
Keller, A.: Quasi-Monte Carlo Methods in Computer Graphics: The Global Illumination Problem. In: Lectures in Applied Mathematics, vol. 32, pp. 455–469 (1996)
Penzov, A.A.: Shading and Illumination Models in Computer Graphics - a literature survey, MTA SZTAKI, Research Report CG-4, Budapest (1992)
Sobol, I.: Monte Carlo Numerical Methods (in Russian). Nauka, Moscow (1975)
Szirmay-Kalos, L.: Monte-Carlo Methods in Global Illumination, Script in WS of, 1999/2000, http://www.fsz.bme.hu/~szirmay/script.pdf
Urena, C.: Computation of Irradiance from Triangles by Adaptive Sampling. Computer Graphics Forum 19(2), 165–171 (2000)
Veach, E.: Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. Dissertation, Stanford University (December 1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Dimov, I.T., Penzov, A.A., Stoilova, S.S. (2007). Parallel Monte Carlo Approach for Integration of the Rendering Equation. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-70942-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70940-4
Online ISBN: 978-3-540-70942-8
eBook Packages: Computer ScienceComputer Science (R0)