Skip to main content

A Monte Carlo Model of Piezoelectric Scattering in GaN

  • Conference paper
Numerical Methods and Applications (NMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4310))

Included in the following conference series:

Abstract

A non-parabolic piezoelectric model of electron-phonon interaction in Gallium Nitride is discussed. The Monte Carlo aspects of the model, needed for the simulation tools which provide the characteristics of GaN-based devices are analyzed in details. The piezo-scattering rate is derived by using quantum-mechanical considerations. The angular dependence is avoided by a proper spherical averaging and the non-parabolicity of the bands is accounted for. For the selection of the after-scattering state we deploy the rejection technique. The model is implemented in a simulation software. We employ a calibrated experimentally verified set of input material parameters to obtain valuable data for the transport characteristics of GaN. The simulation results are in good agreement with experimental data available for different physical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ridley, B.: Quantum Processes in Semiconductors, 3rd edn. Oxford University Press, Oxford (1993)

    Google Scholar 

  2. Kokolakis, G., et al.: Exciton Relaxation in Bulk Wurtzite GaN: the role of piezoelectric interaction. Phys. Stat. Sol (a) 618–627, 618–627 (2003)

    Article  Google Scholar 

  3. Yamakawa, S., et al.: Influence of Electron-Phonon Interaction on Electron Transport in Wurtzite GaN. Semicond. Sci. Technol. 19, 475–477 (2004)

    Article  Google Scholar 

  4. Madelung, O.: Introduction to Solid-State Theory. Springer, Heidelberg (1978)

    Google Scholar 

  5. Palankovski, V., et al.: Identification of Transport Parameters for Gallium Nitride Based Semiconductor Devices. In: 5th Vienna Symp. on Mathematical Modeling MATHMOD, vol. 2, 14-1–14-9. AGRESIM-Verlag, Vienna (2006)

    Google Scholar 

  6. Schwierz, F.: An Electron Mobility Model for Wurtzite GaN. Solid-State Electron. 49(6), 889–895 (2005)

    Article  Google Scholar 

  7. Chin, V., Tansley, T., Osotachn, T.: Electron Mobilities in Gallium, Indium, and Aluminium Nitride. J.Appl.Phys. 75(11), 7365–7372 (1994)

    Article  Google Scholar 

  8. Gaskill, D., Rowland, L., Doverspike, K.: Electrical Properties of AlN, GaN, and AlGaN. In: Edgar, J. (ed.) Properties of Group III Nitrides, 2nd edn. EMIS Datareviews Series, vol. 11, pp. 101–116. IEE INSPEC (1994)

    Google Scholar 

  9. Köhler, K., et al.: Multiwafer Epitaxy of AlGaN/GaN Heterostructures for Power Applications. In: Proc. Intl. Symp. Compound Semiconductors, Lausanne, pp. 235–238 (2003)

    Google Scholar 

  10. Zanato, D., et al.: Energy and Momentum Relaxation of Electrons in Bulk and 2D GaN. Superlattices & Microstructures 36(4-6), 455–463 (2004)

    Article  Google Scholar 

  11. Joshi, R.: Temperature-dependent Electron Mobility in GaN: Effects of Space Charge and Interface Roughness Scattering. Appl. Phys. Lett. 64(2), 223–225 (2004)

    Article  Google Scholar 

  12. Götz, W., et al.: Activation Energies of Si Donors in GaN. Appl. Phys. Lett. 6(22), 3144–3147 (1996)

    Article  Google Scholar 

  13. Kolnik, J., et al.: Electronic Transport Studies of Bulk Zincblende Wurtzite Phases of GaN Based on an Ensemble Monte Carlo Calculation Including a Full Zone Band Structure. J.Appl.Phys. 78(2), 1033–1038 (1995)

    Article  Google Scholar 

  14. Bhapkar, U., Shur, M.: Monte Carlo Calculation of Velocity-Field Characteristics of Wurtzite GaN. J.Appl.Phys. 82(4), 1649–1655 (1997)

    Article  Google Scholar 

  15. Albrecht, J., Wang, R., Ruden, P.: Electron Transport Characteristics of GaN for High Temperature Device Modeling. J.Appl.Phys. 83(9), 4777–4781 (1998)

    Article  Google Scholar 

  16. Farahmand, M., et al.: Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Trans.Electron Devices 48(3), 535–542 (2001)

    Article  Google Scholar 

  17. Wraback, M., et al.: Time-Resolved Electroabsorption Measurement of the Electron Velocity-Field Characteristic in GaN. Appl. Phys. Lett. 76(9), 1154–1157 (2000)

    Article  Google Scholar 

  18. Barker, J., et al.: High-Field Transport Studies of GaN. Physica B 314(1-4), 39–41 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Todor Boyanov Stefka Dimova Krassimir Georgiev Geno Nikolov

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Vitanov, S., Nedjalkov, M., Palankovski, V. (2007). A Monte Carlo Model of Piezoelectric Scattering in GaN. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70942-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70940-4

  • Online ISBN: 978-3-540-70942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics