Abstract
A non-parabolic piezoelectric model of electron-phonon interaction in Gallium Nitride is discussed. The Monte Carlo aspects of the model, needed for the simulation tools which provide the characteristics of GaN-based devices are analyzed in details. The piezo-scattering rate is derived by using quantum-mechanical considerations. The angular dependence is avoided by a proper spherical averaging and the non-parabolicity of the bands is accounted for. For the selection of the after-scattering state we deploy the rejection technique. The model is implemented in a simulation software. We employ a calibrated experimentally verified set of input material parameters to obtain valuable data for the transport characteristics of GaN. The simulation results are in good agreement with experimental data available for different physical conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ridley, B.: Quantum Processes in Semiconductors, 3rd edn. Oxford University Press, Oxford (1993)
Kokolakis, G., et al.: Exciton Relaxation in Bulk Wurtzite GaN: the role of piezoelectric interaction. Phys. Stat. Sol (a) 618–627, 618–627 (2003)
Yamakawa, S., et al.: Influence of Electron-Phonon Interaction on Electron Transport in Wurtzite GaN. Semicond. Sci. Technol. 19, 475–477 (2004)
Madelung, O.: Introduction to Solid-State Theory. Springer, Heidelberg (1978)
Palankovski, V., et al.: Identification of Transport Parameters for Gallium Nitride Based Semiconductor Devices. In: 5th Vienna Symp. on Mathematical Modeling MATHMOD, vol. 2, 14-1–14-9. AGRESIM-Verlag, Vienna (2006)
Schwierz, F.: An Electron Mobility Model for Wurtzite GaN. Solid-State Electron. 49(6), 889–895 (2005)
Chin, V., Tansley, T., Osotachn, T.: Electron Mobilities in Gallium, Indium, and Aluminium Nitride. J.Appl.Phys. 75(11), 7365–7372 (1994)
Gaskill, D., Rowland, L., Doverspike, K.: Electrical Properties of AlN, GaN, and AlGaN. In: Edgar, J. (ed.) Properties of Group III Nitrides, 2nd edn. EMIS Datareviews Series, vol. 11, pp. 101–116. IEE INSPEC (1994)
Köhler, K., et al.: Multiwafer Epitaxy of AlGaN/GaN Heterostructures for Power Applications. In: Proc. Intl. Symp. Compound Semiconductors, Lausanne, pp. 235–238 (2003)
Zanato, D., et al.: Energy and Momentum Relaxation of Electrons in Bulk and 2D GaN. Superlattices & Microstructures 36(4-6), 455–463 (2004)
Joshi, R.: Temperature-dependent Electron Mobility in GaN: Effects of Space Charge and Interface Roughness Scattering. Appl. Phys. Lett. 64(2), 223–225 (2004)
Götz, W., et al.: Activation Energies of Si Donors in GaN. Appl. Phys. Lett. 6(22), 3144–3147 (1996)
Kolnik, J., et al.: Electronic Transport Studies of Bulk Zincblende Wurtzite Phases of GaN Based on an Ensemble Monte Carlo Calculation Including a Full Zone Band Structure. J.Appl.Phys. 78(2), 1033–1038 (1995)
Bhapkar, U., Shur, M.: Monte Carlo Calculation of Velocity-Field Characteristics of Wurtzite GaN. J.Appl.Phys. 82(4), 1649–1655 (1997)
Albrecht, J., Wang, R., Ruden, P.: Electron Transport Characteristics of GaN for High Temperature Device Modeling. J.Appl.Phys. 83(9), 4777–4781 (1998)
Farahmand, M., et al.: Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries. IEEE Trans.Electron Devices 48(3), 535–542 (2001)
Wraback, M., et al.: Time-Resolved Electroabsorption Measurement of the Electron Velocity-Field Characteristic in GaN. Appl. Phys. Lett. 76(9), 1154–1157 (2000)
Barker, J., et al.: High-Field Transport Studies of GaN. Physica B 314(1-4), 39–41 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Vitanov, S., Nedjalkov, M., Palankovski, V. (2007). A Monte Carlo Model of Piezoelectric Scattering in GaN. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds) Numerical Methods and Applications. NMA 2006. Lecture Notes in Computer Science, vol 4310. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70942-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-540-70942-8_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70940-4
Online ISBN: 978-3-540-70942-8
eBook Packages: Computer ScienceComputer Science (R0)