Skip to main content

Semi-Supervised Clustering: Application to Image Segmentation

  • Conference paper
Advances in Data Analysis
  • 3830 Accesses

Abstract

This paper describes a new approach to semi-supervised model-based clustering. The problem is formulated as penalized logistic regression, where the labels are only indirectly observed (via the component densities). This formulation allows deriving a generalized EM algorithm with closed-form update equations, which is in contrast with other related approaches which require expensive Gibbs sampling or suboptimal algorithms. We show how this approach can be naturally used for image segmentation under spatial priors, avoiding the usual hard combinatorial optimization required by classical Markov random fields; this opens the door to the use of sophisticated spatial priors (such as those based on wavelet representations) in a simple and computationally very efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BALRAM, N. and MOURA, J. (1993): Noncausal Gauss-Markov Random Fields: Parameter Structure and Estimation. IEEE Transactions on Information Theory, 39, 1333–1355.

    Article  MATH  Google Scholar 

  • BANERJEE, A., MERUGU. S., DHILLON, I. and GHOSH, J. (2004): Clustering With Bregman Divergences. Proc. SIAM International Conference on Data Mining, Lake Buena Vista.

    Google Scholar 

  • BASU, S., BILENKO, M. and MOONEY, R. (2004): A Probabilistic Framework for Semi-supervised Clustering. Proc. International Conference on Knowledge Discovery and Data Mining, Seattle.

    Google Scholar 

  • BELKIN, M. and NIYOGI, P. (2003): Using Manifold Structure for Partially Labelled Classification. Proc. Neural Information Processing Systems 15, MIT Press, Cambridge.

    Google Scholar 

  • BÖHNING, D. (1992): Multinomial Logistic Regression Algorithm. Annals of the Institute of Statistical Mathematics, 44, 197–200.

    Article  MathSciNet  MATH  Google Scholar 

  • CEBRON, N. and BERTHOLD, M. (2006): Mining of Cell Assay Images Using Active Semi-supervised Clustering. Proc. Workshop on Computational Intelligence in Data Mining, Houston.

    Google Scholar 

  • FIGUEIREDO, M. (2005): Bayesian Image Segmentation Using Wavelet-based Priors. Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego.

    Google Scholar 

  • GRIRA, N., CRUCIANU, M. and BOUJEMAA, N. (2005): Active and Semi-supervised Clustering for Image Database Categorization. Proc. IEEE/EURASIP Workshop on Content Based Multimedia Indexing, Riga, Latvia.

    Google Scholar 

  • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001): The Elements of Statistical Learning. Springer, New York.

    Book  MATH  Google Scholar 

  • KRISHNAPURAM, B., WILLIAMS, D., XUE, Y., HARTEMINK, A., CARIN, L. and FIGUEIREDO, M. (2005): On Semi-supervised Classification. Proc. Neural Information Processing Systems 17, MIT Press, Cambridge.

    Google Scholar 

  • LANGE, K., HUNTER, D. and YANG, I. (2000): Optimization Transfer Using Surrogate Objective Functions. Jour. Computational and Graphical Statistics, 9, 1–59.

    MathSciNet  Google Scholar 

  • LAW, M., TOPCHY, A. and JAIN, A. K. (2005): Model-based Clustering With Probabilistic Constraints. Proc. SIAM Conference on Data Mining, Newport Beach.

    Google Scholar 

  • LI, S. (2001): Markov Random Field Modelling in Computer Vision, Springer, Tokyo.

    Google Scholar 

  • LU, Z. and LEEN, T. (2005): Probabilistic Penalized Clustering. Proc. Neural Information Processing Systems 17, MIT Press, Cambridge.

    Google Scholar 

  • MALLAT, S. (1998): A Wavelet Tour of Signal Processing. Academic Press, San Diego, USA.

    MATH  Google Scholar 

  • MCLACHLAN, G. and KRISHNAN, T. (1997): The EM Algorithm and Extensions. Wiley, New York.

    MATH  Google Scholar 

  • MOULIN, P. and LIU, J. (1999): Analysis of Multiresolution Image Denoising Schemes Using Generalized-Gaussian and Ccomplexity Priors. IEEE Transactions on Information Theory, 45, 909–919.

    Article  MathSciNet  MATH  Google Scholar 

  • NIKKILÄ, J., TÖRÖNEN, P., SINKKONEN, J. and KASKI, S. (2001): Analysis of Gene Expression Data Using Semi-supervised Clustering. Proc. Bioinformatics 2001, Skövde.

    Google Scholar 

  • SEEGER, M. (2001): Learning With Labelled and Unlabelled Data. Technical Report, Institute for Adaptive and Neural Computation, University of Edinburgh.

    Google Scholar 

  • SHENTAL, N., BAR-HILLEL, A., HERTZ, T. and WEINSHALL, D. (2003): Computing Gaussian Mixture Models With EM Using Equivalence Constraints. Proc. Neural Information Processing Systems 15, MIT Press, Cambridge.

    Google Scholar 

  • WAGSTAFF, K., CARDIE, C., ROGERS, S. and SCHRÖDL, S. (2001): Constrained K-means Clustering With Background Knowledge. Proc. International Conference on Machine Learning, Williamstown.

    Google Scholar 

  • WU, C. (1983): On the Convergence Properties of the EM Algorithm. Annals of Statistics, 11, 95–103.

    Article  MathSciNet  MATH  Google Scholar 

  • ZHONG, S. (2006): Semi-supervised Model-based Document Clustering: A Comparative Study. Machine Lerning, 2006 (in press).

    Google Scholar 

  • ZHU, X. (2006): Semi-Supervised Learning Literature Survey. Technical Report, Computer Sciences Department, University of Wisconsin, Madison.

    Google Scholar 

  • ZHU, X., GHAHRAMANI, Z. and LAFFERTY, J. (2003): Semi-supervised Learning Using Gaussian Fields and Harmonic Functions. Proc. International Conference on Machine Learning, Washington DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueiredo, M.A.T. (2007). Semi-Supervised Clustering: Application to Image Segmentation. In: Decker, R., Lenz, H.J. (eds) Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70981-7_5

Download citation

Publish with us

Policies and ethics