Skip to main content

Optimized Alignment and Visualization of Clustering Results

  • Conference paper
Advances in Data Analysis

Abstract

The grouping of data by clustering generally depends on the clustering method used and its specific parameter settings. Therefore, the comparison of results obtained from different clusterings is generally recommended (ensemble clustering). The present study presents a simple and an optimized method for visualizing such results by drawing a two-dimensional color map that associates data with cluster memberships. The methodology is applicable to any unsupervised and supervised classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • BOLDRICK, J.C., ALIZADEH, A.A., DIEHN, M., DUDOIT, S., LIU, C.L., BELCHER, C.E., BOTSTEIN, D., STAUDT, L.M., BROWN, P.O. and RELMAN, D.A. (2002): Stereotyped and Specific Gene Expression Programs in Human Innate Immune Responses to Bacteria, Proc. Natl. Acad. Sci. U.S.A., 99,2, 972–977.

    Article  Google Scholar 

  • CHO, R.J., CAMPBELL, M.J., WINZELER, E.A., STEINMETZ, L., CONWAY, A., WODICKA, L., WOLFSBERG, T.G., GABRIELIAN, A.E., LANDSMAN, D., LOCKHART, D.J. and DAVIS R.W. (1998): A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle, Molecular Cell, 2,1, 65–73.

    Article  Google Scholar 

  • MONTI, S., TAMAYO, P., MESIROV, J. and GOLUB, T. (2003): Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data, Machine Learning, 52, 91–118.

    Article  MATH  Google Scholar 

  • SCHERF, U., ROSS, D.T., WALTHAM, M., SMITH, L.H., LEE, J.K., TANABE, L., KOHN, K.W., REINHOLD, W.C., MYERS, T.G., ANDREWS, D.T., SCUDIERO, D.A., EISEN, M.B., SAUSVILLE, E.A., POMMIER, Y., BOTSTEIN, D., BROWN, P.O. and WEINSTEIN, J.N. (2000): A Gene Expression Database for the Molecular Pharmacology of Cancer, Nature Genetics, 24, 236–244.

    Article  Google Scholar 

  • TORRENTE, A., KAPUSHESKY, A. and BRAZMA, A. (2005): A New Algorithm for Comparing and Visualizing Relationships Between Hierarchical and Flat Gene Expression Data Clusterings, Bioinformatics, 21,21, 3993–3999.

    Article  Google Scholar 

  • YEOH, E.-J., ROSS, M.E., SHURTLEFF, S.A., WILLIAMS, W.K., PATEL, D., MAHFOUZ, R., BEHM, F.G., RAIMONDI, S.C., RELLING, M.V., PATEL, A., CHENG, C., CAMPANA, D., WILKINS, D., ZHOU, X., LI, J., LIU, H., PUI, C.-H., EVANS, W.E., NAEVE, C., WONG, L. and DOWNING, J.R. (2002): Classification, Subtype Discovery, and Prediction of Outcome in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling, Cancer Cell, 1,2, 133–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, M., Radke, D., Möller, U. (2007). Optimized Alignment and Visualization of Clustering Results. In: Decker, R., Lenz, H.J. (eds) Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70981-7_9

Download citation

Publish with us

Policies and ethics