Abstract
The grouping of data by clustering generally depends on the clustering method used and its specific parameter settings. Therefore, the comparison of results obtained from different clusterings is generally recommended (ensemble clustering). The present study presents a simple and an optimized method for visualizing such results by drawing a two-dimensional color map that associates data with cluster memberships. The methodology is applicable to any unsupervised and supervised classification results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
BOLDRICK, J.C., ALIZADEH, A.A., DIEHN, M., DUDOIT, S., LIU, C.L., BELCHER, C.E., BOTSTEIN, D., STAUDT, L.M., BROWN, P.O. and RELMAN, D.A. (2002): Stereotyped and Specific Gene Expression Programs in Human Innate Immune Responses to Bacteria, Proc. Natl. Acad. Sci. U.S.A., 99,2, 972–977.
CHO, R.J., CAMPBELL, M.J., WINZELER, E.A., STEINMETZ, L., CONWAY, A., WODICKA, L., WOLFSBERG, T.G., GABRIELIAN, A.E., LANDSMAN, D., LOCKHART, D.J. and DAVIS R.W. (1998): A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle, Molecular Cell, 2,1, 65–73.
MONTI, S., TAMAYO, P., MESIROV, J. and GOLUB, T. (2003): Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data, Machine Learning, 52, 91–118.
SCHERF, U., ROSS, D.T., WALTHAM, M., SMITH, L.H., LEE, J.K., TANABE, L., KOHN, K.W., REINHOLD, W.C., MYERS, T.G., ANDREWS, D.T., SCUDIERO, D.A., EISEN, M.B., SAUSVILLE, E.A., POMMIER, Y., BOTSTEIN, D., BROWN, P.O. and WEINSTEIN, J.N. (2000): A Gene Expression Database for the Molecular Pharmacology of Cancer, Nature Genetics, 24, 236–244.
TORRENTE, A., KAPUSHESKY, A. and BRAZMA, A. (2005): A New Algorithm for Comparing and Visualizing Relationships Between Hierarchical and Flat Gene Expression Data Clusterings, Bioinformatics, 21,21, 3993–3999.
YEOH, E.-J., ROSS, M.E., SHURTLEFF, S.A., WILLIAMS, W.K., PATEL, D., MAHFOUZ, R., BEHM, F.G., RAIMONDI, S.C., RELLING, M.V., PATEL, A., CHENG, C., CAMPANA, D., WILKINS, D., ZHOU, X., LI, J., LIU, H., PUI, C.-H., EVANS, W.E., NAEVE, C., WONG, L. and DOWNING, J.R. (2002): Classification, Subtype Discovery, and Prediction of Outcome in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling, Cancer Cell, 1,2, 133–143.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoffmann, M., Radke, D., Möller, U. (2007). Optimized Alignment and Visualization of Clustering Results. In: Decker, R., Lenz, H.J. (eds) Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70981-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-70981-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70980-0
Online ISBN: 978-3-540-70981-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)