Abstract
This paper presents a system whose purpose is to monitor a patient continuously from indoor or outdoor environments. The system is based on a Bluetooth PAN, carried by the patient, whose central node, a smart phone, compiles information about patient’s location and health status. These data are encrypted to be sent to a server through Wifi or GPRS/UMTS. The system provides facilities to access to patient’s data, even from a smart phone by a J2ME application. It also allows to configure remotely the threshold values used to detect emergency situations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Istepanian R S, Jovanov E, Zhang Y T (2004) Introduction to the Special Section on M-Health: Beyond Seamless Mobility and Global Wireless Health-Care Connectivity, IEEE Trans. on Inf. Tech. in Biomedicine, vol. 8, pp 405–414, Dec. 2004.
Jovanov E, Milenkovic A, Otto C et al. (2005) A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation, Jour. of Neuroengineering Rehabilitation, vol. 2, no. 6.
Rasid A, Woodward B (2005) Bluetooth Telemedicine Processor for Multichannel Biomedical Signal Transmission via Mobile Cellular Networks, IEEE Trans.on Inf. Tech. in Biomedicine, vol. 9, pp 35–43.
Hung K, Zhang, Y, Tai B (2004) Wearable medical devices for telehome healthcare, in Proc. of Conf. EMBC 2004, vol. 7, pp 5384–5387.
Krco S (2003) Implementation solutions and issues in building a personal sensor network for health care monitoring, in Inf. Tech. Applications in Biomedicine, 2003. 4th International IEEE EMBS Special Topic Conference on, pp 350–353.
Jovanov E, Price J, Raskovic D et al. (2000) Wireless Personal Area Networks in Telemedical Environment, in Proc. of the IEEE EMBS Intern. Conf. on Inf. Tech. Applications in Biomedicine, pp 22–27.
Malan A D, Fulford-Jones T, Welsh M (2004) CodeBlue: An Ad Hoc Sensor Network Infraestructure for Emergency Medical Care, in Proc. of MobiSys WAMES 2004, Boston, MA, pp 12–14.
Warren S, Yao J, Schmitz R et al. (2003) Wearable telemonitoring systems designed with interoperability in mind, in Proc. of IEEE Eng. in Medicine and Biology Society, 2003, vol. 4, pp 3736–3739.
Timmons N, Scanlon W (2004) Analysis of the performance of IEEE 802.15.4 for medical sensor body area networking, in Proc. of IEEE SECON 2004, pp 16–24.
Hung K, Zhang Y (2002) Usage of Bluetooth in wireless sensors for tele-healthcare, in [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proc. of the Second Joint, vol. 3, pp 1881–1882.
Warren S, Yao J, Schmitz R et al. (2004) Reconfigurable Point-of-Care Systems Designed with Interoperability Standards, in Proc. of EMBC 2004, vol. 2, pp 3270–3273.
Yao J, Schmitz R, Warren S (2005) A wearable point-of-care system for home use that incorporates plug-and-play and wireless standards, Information Technology in Biomedicine, IEEE Trans. on, vol. 9, pp 363–371.
Anliker U, Ward J, Lukowicz P et al. (2004) AMON: a wearable multiparameter medical monitoring and alert system, IEEE Trans.on Inf. Tech. in Biomedicine, vol. 8, pp 415–427.
Dong J, Zhu H (2004) Mobile ECG detector through GPRS/Internet, in Computer-Based Medical Systems, 2004. CBMS 2004. Proc.. 17th IEEE Symposium on, pp 485–489.
Khoor S, Nieberl K, Fugedi K et al. (2001) Telemedicine ECGtelemetry with Bluetooth technology, Computers in Cardiology 2001, pp 585–588.
Liszka K, Mackin M, Lichter (2004) Keeping a beat on the heart, in Pervasive Computing, IEEE, vol. 3, pp 42–49.
Lee R G, Hsiao C C, Chen C C et al. (2006) A mobile-care system integrated with bluetooth blood pressure and pulse monitor, and cellular phone, IEICE Trans. on Information and Systems, vol. E89-D, pp 1702–1711.
Krco S, Kostic S, Sakac D et al. (2005) mSens mobile health monitoring system, vol. 1, pp 80–83, The International Conference on Computer as a Tool. EUROCON 2005.
Krco S, Delic V (2003) Personal wireless sensor network for mobile health care monitoring, in Proc. of TELSIKS 2003, vol. 2, pp 471–474.
Wang D, Lu Y, Zhang H et al. (2005) A wireless sensor network based on Bluetooth for telemedicine monitoring system, in Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, vol. 2, pp 1361–1364.
Warren S, Lebak J, Yao J et al. (2005) Interoperability and Security in Wireless Body Area Network Infrastructures, in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, pp 3837–3840.
Park D, Kang S (2004) Development of reusable and expandable communication for wearable medical sensor network, in Proc. of. EMBC 2004, vol. 7, pp 5380–5383.
Nonin Medical Inc. at http://www.nonin.com
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 International Federation for Medical and Biological Engineering
About this paper
Cite this paper
Morón, M.J., Luque, J.R., Botella, A.A., Cuberos, E.J., Casilari, E., Diaz-Estrella, A. (2007). A Smart Phone-based Personal Area Network for Remote Monitoring of Biosignals. In: Leonhardt, S., Falck, T., Mähönen, P. (eds) 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). IFMBE Proceedings, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70994-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-540-70994-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70993-0
Online ISBN: 978-3-540-70994-7
eBook Packages: EngineeringEngineering (R0)