Skip to main content

Pixelizing Data Cubes: A Block-Based Approach

  • Conference paper
Pixelization Paradigm (VIEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4370))

Included in the following conference series:

Abstract

Multidimensional databases are commonly used for decision making in the context of data warehouses. Considering the multidimensional model, data are presented as hypercubes organized according to several dimensions. However, in general, hypercubes have more than three dimensions and contain a huge amount of data, and so cannot be easily visualized. In this paper, we show that data cubes can be visualized as images by building blocks that contain mostly the same value. Blocks are built up using an APriori-like algorithm and each block is considered as a set of pixels which colors depend on the corresponding value. The key point of our approach is to set how to display a given block according to its corresponding value while taking into account that blocks may overlap. In this paper, we address this issue based on the Pixelization paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbara, D., Sullivan, M.: Quasi-cubes: Exploiting approximation in multidimensional data sets. SIGMOD Record 26(3) (1997)

    Google Scholar 

  2. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A personalization framework for olap queries. In: DOLAP ’05: Proceedings of the 8th ACM international workshop on Data warehousing and OLAP, Bremen, Germany, pp. 9–18. ACM Press, New York, NY, USA (2005), doi:10.1145/1097002.1097005

    Chapter  Google Scholar 

  3. Cabibbo, L., Torlone, R.: A Logical Approach to Multidimensional Databases. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 183–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  5. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. ACM-SIGMOD Records 26(1), 65–74 (1997)

    Article  Google Scholar 

  6. Choong, Y.W., Laurent, A., Laurent, D.: Building fuzzy blocks from data cubes. In: 11th IPMU International Conference ( to appear, 2006)

    Google Scholar 

  7. Choong, Y.W., Laurent, D., Marcel, P.: Computing appropriate representation for multidimenstional data. DKE Int. Journal 45, 181–203 (2001)

    Google Scholar 

  8. Choong, Y.W., Maussion, P., Laurent, A., Laurent, D.: Summarizing multidimensional databases using fuzzy rules. In: Proc. 10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’04), Perugia. Italy, pp. 99–106 (2004)

    Google Scholar 

  9. Codd, E.F., Codd, S.B., Salley, C.T.: Providing olap (on-line analytical processing) to user-analysts: An it mandate. In: White Paper (1993)

    Google Scholar 

  10. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tabs, and Sub-Totals. Journal of Data Mining and Knowledge Discovery 1(1), 29–53 (1997)

    Article  Google Scholar 

  11. Gyssens, M., Lakshmanan, L.V.S.: A Foundation for Multidimensional Databases. In: Proc. 23rd Int. Conf. on Very Large Data Bases, Athens, Greece, August 1997, pp. 106–115 (1997)

    Google Scholar 

  12. Han, J., Kamber, M.: Data Mining - Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  13. Healey, C.G.: Effective Visualization of Large Multidimensional Datasets. PhD thesis, University of British Columbia (1996)

    Google Scholar 

  14. Inmon, W.H.: Building the Datawarehouse. John Wiley & Sons, Chichester (1996)

    Google Scholar 

  15. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses. Springer, Heidelberg (1998)

    Google Scholar 

  16. Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.): Data Warehousing and Knowledge Discovery. LNCS, vol. 2737. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  17. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6(1) (2000)

    Google Scholar 

  18. Keim, D.A., Kriegel, H.-P.: Issues in visualizing large databases. In: Proc. Int. Conf. on Visual Database Systems, Chapman & Hall Ltd., Boca Raton (1995)

    Google Scholar 

  19. Kimball, R.: The Datawarehouse Toolkit. John Wiley & Sons, Chichester (1996)

    Google Scholar 

  20. Maniatis, A.S., Vassiliadis, P., Skiadopoulos, S., Vassiliou, Y.: Advanced visualization for olap. In: Proceedings of ACM 6th International Workshop on Data Warehousing and OLAP (DOLAP), New Orleans, ACM Press, New York (2003)

    Google Scholar 

  21. Marakas, G.M.: Modern Data Warehousing, Mining and Visualization: Core Concepts. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  22. Marcel, P.: Modeling and querying multidimensional databases: An overview. Networking and Information Systems Journal 2(5-6), 515–548 (1999)

    Google Scholar 

  23. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343. IEEE Computer Society Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  24. Shoshani, A.: Statistical Databases: Characteristics, Problems, and some Solutions. In: Proceedings of Eigth International Conference on Very Large Data Bases, Mexico City, Mexico, September 8-10, 1982, pp. 208–222. Morgan Kaufmann, San Francisco (1982)

    Google Scholar 

  25. Spence, R.: Information Visualization. Addison-Wesley, Reading (2000)

    Google Scholar 

  26. Stolte, C., Tang, D., Hanrahan, P.: Query analysis and visualization of hierarchically structured data using polaris. In: Proc. of the 8th ACM SIGKDD Intl. Conference of Knowledge Dicovery and Data Mining, ACM Press, New York (2002)

    Google Scholar 

  27. Travis, D.: Effective Color Displays: Theory and Practice. Academic Press, London (1991)

    Google Scholar 

  28. Vassiliadis, P.: Modeling Databases, Cubes and Cube Operations. In: Rafanelli, M., Jarke, M. (eds.) Proceedings of the 10th International Conference on Scientific and Statistical Database Management (SSDBM), Capri, Italy, July 1998, IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  29. Vassiliadis, P., Sellis, T.: A survey of logical Models for OLAP Databases. SIGMOD Record 28(4) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre P Lévy Bénédicte Le Grand François Poulet Michel Soto Laszlo Darago Laurent Toubiana Jean-François Vibert

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Choong, Y.W., Laurent, A., Laurent, D. (2007). Pixelizing Data Cubes: A Block-Based Approach. In: Lévy, P.P., et al. Pixelization Paradigm. VIEW 2006. Lecture Notes in Computer Science, vol 4370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71027-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71027-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71026-4

  • Online ISBN: 978-3-540-71027-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics