Skip to main content

On the Neuronal Morphology-Function Relationship: A Synthetic Approach

  • Conference paper
Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4366))

Abstract

Recent investigations emphasized the role of dendrites in the information processing and computational capabilities of a single neuron. On a local electro physiological level, it is known which computations can be done in dendrites. However, it is still largely unknown how the complete dendritic morphology contributes to the function of a single neuron. In this study we present a synthetic approach to investigate the relationship between morphology and function. Our approach is implemented in a software tool and an experiment is presented. In the experiment we generate morphologies that approximate the functional properties of the Nucleus Laminaris. We discuss the possibilities and limitations of our synthesized approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon-Snir, H., Carr, C.E., Rinzel, J.: The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998)

    Article  Google Scholar 

  2. Ascoli, G.A.: Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Neuroscience Reviews 7, 318–324 (2006)

    Article  Google Scholar 

  3. Ascoli, G.A., Krichmar, J.L.: L-Neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing 32-33, 1003–1011 (2000)

    Article  Google Scholar 

  4. Ascoli, G.A., et al.: Generation, description and storage of dendritic morphology. Phil. Trans. R. Soc. Lond. B 356, 1131–1145 (2001)

    Article  Google Scholar 

  5. Ascoli, G.A., et al.: Computer generation and quantitative morphometric analysis of virtual neurons. Anat. Embryol. 204, 283–301 (2001)

    Article  Google Scholar 

  6. Carnevale, N., Hines, M.: The NEURON book. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  7. Consoulas, C., et al.: Behavioral transformations during metamorphosis: remodeling of neural and motor systems. Brain research bulletin 53(5), 571–583 (2000)

    Article  Google Scholar 

  8. Duch, C., Levine, R.B.: Remodeling of membrane properties and dendritic architecture accompanies the postembryonic conversion of a slow into a fast motorneuron. J. NeuroScience 20(18), 6950–6961 (2000)

    Google Scholar 

  9. Eberhard, J.P., Wanner, A., Wittum, G.: NeuGen: a toold for the generation of realistic morphology of cortical neurons and neural networks in 3d. Neurocomputing, XX:in press (2006)

    Google Scholar 

  10. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Kath, W.L.: Computational Modelling of Dendrites. J. Neurobiol 64, 91–99 (2005)

    Article  Google Scholar 

  12. Koch, C., Segev, I.: The role of single neurons in information processing. Nature Neuroscience 3, 1171–1177 (2000)

    Article  Google Scholar 

  13. Koza, J.: Genetic programming: On the programming of computers by means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Krichmar, J.L., et al.: Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res. 941, 11–28 (2002)

    Article  Google Scholar 

  15. Lien, J.-M., Morales, M., Amato, N.M.: Neuron PRM: A Framework for Constructing Cortical Networks. Neurocomputing 54-54, 191–197 (2003)

    Article  Google Scholar 

  16. Lindenmayer, A.: Mathematical models for cellular interactions in development i & ii. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  17. London, M., Häusser, M.: Dendritic computation. Annu. Rev. Neurosci. 25, 5003–5532 (2005)

    Google Scholar 

  18. Mainen, Z.F., Sejnowski, T.J.: Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996)

    Article  Google Scholar 

  19. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  20. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  21. Scott, E.K., Luo, L.: How do dendrites take their shape? Nature (neuroscience) 4(4), 359–365 (2001)

    Article  Google Scholar 

  22. Segev, I.: Sound grounds for computing dendrites. Nature 393, 207–208 (1998)

    Article  Google Scholar 

  23. Segev, I., London, M.: Untangling dendrites with quantitative models. Science 290, 744–749 (2000)

    Article  Google Scholar 

  24. Stepanyants, A., Chklovskii, D.B.: Neurogeometry and potential synaptic connectivity. Trends in Neurosciences 28(7), 387–394 (2005)

    Article  Google Scholar 

  25. Steuber, V., De Schutter, E., Jaeger, D.: Passive model of neurons in the deep cerebellar nuclei: the effect of reconstruction errors. Neurocomputing 58-60, 563–568 (2004)

    Article  Google Scholar 

  26. Stiefel, K.M., Sejnowski, T.J.: Mapping function onto neuronal morphology. J. Neurophysiol, XX:XX (in press) (2006)

    Google Scholar 

  27. Torben-Nielsen, B., Tuyls, K., Postma, E.O.: Shaping realistic neuronal morphologies: An evolutionary computation method. In: International Joint Conference on Neural Networks (IJCNN2006), Vancouver, Canada (2006)

    Google Scholar 

  28. Torben-Nielsen, B., Tuyls, K., Postma, E.O.: EvOL-Neuron: Neuronal Morphology Generation (submitted)

    Google Scholar 

  29. van Ooyen, A., et al.: The effect of dendritic topology on firing patterns in model neurons. Network: Computation in Neural Systems 13, 311–325 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl Tuyls Ronald Westra Yvan Saeys Ann Nowé

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Torben-Nielsen, B., Tuyls, K., Postma, E.O. (2007). On the Neuronal Morphology-Function Relationship: A Synthetic Approach. In: Tuyls, K., Westra, R., Saeys, Y., Nowé, A. (eds) Knowledge Discovery and Emergent Complexity in Bioinformatics. KDECB 2006. Lecture Notes in Computer Science(), vol 4366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71037-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71037-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71036-3

  • Online ISBN: 978-3-540-71037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics