Abstract
Although graphs are very common in computer science, they are still very difficult to handle for proof assistants as proving properties of graphs may require heavy computations. This is a problem when it comes to issues such as the certification of a proof of well-foundedness, since premises of generic theorems involving graph properties may be at least as difficult to prove as their conclusion. We define a framework and propose an original approach based on both shallow and deep embeddings for the mechanical certification of these kinds of proofs without the help of any graph library. This framework actually avoids concrete models of graphs and handles those implicitly. We illustrate this approach on a powerful refinement of the dependency pairs approach for proving termination. This refinement makes heavy use of graph analysis and our technique is powerful enough to deal efficiently –and with full automation– with graphs containing thousands of arcs, as they may occur in practice.
Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-0146-01).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arts, T., Giesl, J.: Automatically Proving Termination Where Simplification Orderings Fail. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214. Springer, Heidelberg (1997)
Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)
Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report, RWTH Aachen (September 2001)
Arts, T., Giesl, J.: Verification of Erlang Processes by Dependency Pairs. Application Algebra in Engineering, Communication and Computing 12(1,2), 39–72 (2001)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Berge, C.: Graphs, 3rd edn. North-Holland mathematical library, vol. 6. North-Holland, Amsterdam (1991)
Blanqui, F., Coupet-Grimal, S., Delobel, W., Hinderer, S., Koprowski, A.: Color, a coq library on rewriting and termination. In: Geser, A., Sondergaard, H. (eds.) Extended Abstracts of the 8th International Workshop on Termination, WST 2006 (August 2006)
Contejean, É.: The Coccinelle library for rewriting, http://www.lri.fr/~contejea/Coccinelle/coccinelle.html
Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of automated termination proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 148–162. Springer, Heidelberg (2007)
Contejean, É., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with c i me. In: Rubio, A. (ed.) Extended Abstracts of the 6th International Workshop on Termination, WST 2003, June 2003, pp. 71–73 (2003), http://cime.lri.fr
Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)
Endrullis, J.: Jambox, http://joerg.endrullis.de/index.html
Giesl, J.: Thomas Arts, and Enno Ohlebusch. Modular Termination Proofs for Rewriting Using Dependency Pairs 34, 21–58 (2002)
Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg (2006)
Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Dependency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Heidelberg (2003)
Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)
Koprowski, A.: TPA., http://www.win.tue.nl/tpa
Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg (1999)
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
The Coq Development Team. The Coq Proof Assistant Documentation – Version V8.1 (February 2007), http://coq.inria.fr
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courtieu, P., Forest, J., Urbain, X. (2008). Certifying a Termination Criterion Based on Graphs, without Graphs. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2008. Lecture Notes in Computer Science, vol 5170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71067-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-71067-7_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71065-3
Online ISBN: 978-3-540-71067-7
eBook Packages: Computer ScienceComputer Science (R0)