Abstract
Axiom pinpointing has been introduced in description logics (DL) to help the user understand the reasons why consequences hold by computing minimal subsets of the knowledge base that have the consequence in question (MinA). Most of the pinpointing algorithms described in the DL literature are obtained as extensions of tableau-based reasoning algorithms for computing consequences from DL knowledge bases. In this paper, we show that automata-based algorithms for reasoning in DLs can also be extended to pinpointing algorithms. The idea is that the tree automaton constructed by the automata-based approach can be transformed into a weighted tree automaton whose so-called behaviour yields a pinpointing formula, i.e., a monotone Boolean formula whose minimal valuations correspond to the MinAs. We also develop an approach for computing the behaviour of a given weighted tree automaton.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F.: Augmenting concept languages by transitive closure of roles: An alternative to terminological cycles. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI 1991) (1991)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSPACE results for description logics. Information and Computation (to appear, 2008)
Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. J. of Automated Reasoning 14, 149–180 (1995)
Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 11–27. Springer, Heidelberg (2007)
Baader, F., Peñaloza, R.: Blocking and pinpointing in forest tableaux. LTCS-Report LTCS-08-02, Chair for Automata Theory, Institute for Theoretical Computer Science, Dresden University of Technology, Germany (2008), http://lat.inf.tu-dresden.de/research/reports.html
Baader, F., Peñaloza, R.: Pinpointing in terminating forest tableaux. LTCS-Report LTCS-08-03, Chair for Automata Theory, Institute for Theoretical Computer Science, Dresden University of Technology, Germany (2008), http://lat.inf.tu-dresden.de/research/reports.html
Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)
Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the description logic \(\mathcal{EL}^+\). In: Proceedings of the International Conference on Representing and Sharing Knowledge Using SNOMED (KR-MED 2008), Phoenix, Arizona (2008)
Baader, F., Tobies, S.: The inverse method implements the automata approach for modal satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 92–106. Springer, Heidelberg (2001)
Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)
Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)
Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2001) (2001)
Horrocks, I.: Using an expressive description logic: FaCT or fiction. In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)
Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)
Lee, K., Meyer, T., Pan, J.Z.: Computing maximally satisfiable terminologies for the description logic \(\mathcal{ALC}\) with GCIs. In: Proc. of the 2006 Description Logic Workshop (DL 2006), CEUR Electronic Workshop Proceedings (2006)
Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Ellis, A., Hagino, T. (eds.) Proc. of the 14th International Conference on World Wide Web (WWW 2005), pp. 633–640. ACM Press, New York (2005)
Schlobach, S.: Diagnosing terminologies. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 670–675. AAAI Press/The MIT Press (2005)
Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, pp. 355–362. Morgan Kaufmann, Los Altos (2003)
Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)
Seidl, H.: Finite tree automata with cost functions. Theor. Comput. Sci. 126(1), 113–142 (1994)
Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Proc. of the 2004 Description Logic Workshop (DL 2004), pp. 212–213 (2004)
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)
Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. of Computer and System Sciences 32, 183–221 (1986); A preliminary version appeared in Proc. of the 16th ACM SIGACT Symp. on Theory of Computing (STOC 1984)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baader, F., Peñaloza, R. (2008). Automata-Based Axiom Pinpointing. In: Armando, A., Baumgartner, P., Dowek, G. (eds) Automated Reasoning. IJCAR 2008. Lecture Notes in Computer Science(), vol 5195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71070-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-71070-7_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71069-1
Online ISBN: 978-3-540-71070-7
eBook Packages: Computer ScienceComputer Science (R0)