Skip to main content

Tracking of Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences

  • Conference paper
Bildverarbeitung für die Medizin 2007

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Modern developments in time-lapse microscopy enable the observation of a variety of processes exhibited by viruses. The dynamic nature of these processes requires the tracking of viruses over time to explore the spatio-temporal relationships. In this work, we developed deterministic and probabilistic approaches for multiple virus tracking. A quantitative comparison based on synthetic image sequences was carried out to evaluate the performance of the different algorithms. We have also applied the algorithms to real microscopy images of HIV-1 particles and have compared the tracking results with ground truth obtained from manual tracking. It turns out that the probabilistic approach outperforms the deterministic schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sbalzarini IF, Koumoutsakos P. Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 2005;151(2):182–195.

    Article  Google Scholar 

  2. Seisenberger G, Ried MU, Endre T, Buning H, Hallek M, Bräuchle C. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001;294(5548):1929–1932.

    Article  Google Scholar 

  3. Sage D, Neumann FR, Hediger F, Gasser SM, Unser M. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans Image Process 2005;14(9):1372–1382.

    Article  Google Scholar 

  4. Chetverikov D, Verestoy J. Tracking feature points: a new algorithm. Int Conf Pattern Recognit 1998;02:1436.

    Google Scholar 

  5. Smal I, Niessen W, Meijering E. Bayesian tracking for fluorescence microscopic imaging. Procs ISBI 2006; 550–553.

    Google Scholar 

  6. Lampe M, Briggs JAG, Endress T, Glass B, Riegelsberger S, Kr”ausslich H, et al. Double-labelled HIV-1 particles for study of virus-cell interaction. Virology 2006; In Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godinez, W.J., Lampe, M., Wörz, S., Müller, B., Eils, R., Rohr, K. (2007). Tracking of Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences. In: Horsch, A., Deserno, T.M., Handels, H., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2007. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71091-2_2

Download citation

Publish with us

Policies and ethics